Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.......+\dfrac{1}{37.38.39}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)
\(=\dfrac{370}{741}\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+......+\dfrac{1}{37.38.39}\)
Ta có:
\(\dfrac{1}{1.2.3}=\dfrac{1}{1.2}-\dfrac{1}{2.3}\); \(\dfrac{1}{2.3.4}=\dfrac{1}{2.3}-\dfrac{1}{3.4}\);.......
\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)
\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)
\(=\dfrac{370}{741}\)
Vậy \(A=\dfrac{370}{741}\)
theo mình thì
Ta chứng minh được bài toán tổng quát sau
2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]
Áp dụng:
ta có 2C = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20
= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380
=> C = 189/ 760
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)+1\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+2n+n+2}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+3n+2}\right)\)
\(S_n=\dfrac{1}{4}-\dfrac{1}{2\left(n^2+3n+2\right)}\)
\(S_n=\dfrac{1}{4}-\dfrac{1}{2n^2+6n+4}\)
\(S_n=\dfrac{2n^2+6n+4}{4\left(2n^2+6n+4\right)}-\dfrac{4}{4\left(2n^2+6n+4\right)}\)
\(S_n=\dfrac{2n^2+6n+4}{8n^2+48n+16}-\dfrac{4}{8n^2+48n+16}\)
\(S_n=\dfrac{2n^2+6n}{8n^2+48n+16}\)
\(S_n=\dfrac{2\left(n^2+3n\right)}{2\left(4n^2+24n+8\right)}=\dfrac{n^2+3n}{4n^2+24n+8}\)
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\\ =>S_n=\dfrac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)
Giải sai r nhéLinh Nguyễn
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ
6:
\(4D=2^2+2^4+...+2^{202}\)
=>3D=2^202-1
hay \(D=\dfrac{2^{202}-1}{3}\)
7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)
\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
\(A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(A=1-\dfrac{1}{99}\)
\(A=\dfrac{98}{99}\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\)
\(B=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(B=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{90}\)
\(B=\dfrac{22}{45}\)
\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+.........+\dfrac{2}{97.99}\)
\(\Leftrightarrow A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Leftrightarrow A=1-\dfrac{1}{99}=\dfrac{98}{99}\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+.......+\dfrac{2}{8.9.10}\)
\(\Leftrightarrow B=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+......+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(\Leftrightarrow B=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{90}\)
\(\Leftrightarrow B=\dfrac{22}{45}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)
\(=\frac{1}{2}.\frac{370}{741}\)
\(=\frac{1}{2}.\frac{370}{741}\)
\(=\frac{185}{741}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2A=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)
\(A=\frac{185}{741}\)
Chúc bn hc tốt <3
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{38.39}\right)=\frac{185}{741}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)
\(=\frac{1}{2}\left(\frac{741}{1482}-\frac{1}{1482}\right)\)
\(=\frac{1}{2}.\frac{370}{741}\)
\(=\frac{185}{741}\).
Lời giải:
Đặt biểu thức trên là $A$.
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38.39}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)
\(\Rightarrow A=\frac{185}{741}\)