Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.\(-\dfrac{3}{7}+\dfrac{5}{13}+\dfrac{-4}{12}=-\dfrac{103}{273}\)
b.\(-\dfrac{5}{21}+\dfrac{-2}{21}+\dfrac{8}{24}=\dfrac{-5-2}{21}+\dfrac{8}{24}=-\dfrac{7}{21}+\dfrac{8}{24}=-\dfrac{1}{3}+\dfrac{8}{24}=0\)
c.\(\dfrac{5}{13}+\dfrac{-5}{7}+\dfrac{-20}{41}+\dfrac{8}{13}+\dfrac{-21}{41}=\left(\dfrac{5}{13}+\dfrac{8}{13}\right)+\left(\dfrac{-20}{41}+\dfrac{-21}{41}\right)+-\dfrac{5}{7}=1-1-\dfrac{5}{7}=-\dfrac{5}{7}\)
Ta có: \(A=\dfrac{5}{13}+\dfrac{-5}{7}+\dfrac{-20}{41}+\dfrac{8}{13}+\dfrac{-21}{41}\)
\(=\left(\dfrac{5}{13}+\dfrac{8}{13}\right)+\left(\dfrac{-20}{41}+\dfrac{-21}{41}\right)+\dfrac{-5}{7}\)
\(=1-1+\dfrac{-5}{7}\)
\(=\dfrac{-5}{7}\)
1: =5/13+8/13-20/41-21/41-5/17
=1-1-5/17=-5/17
2: =1/5+4/5-2/9-7/9+16/17
=16/17+1-1=16/17
3: =1/3-1/5+1/5-1/7+...+1/99-1/101
=1/3-1/101
=98/303
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
Giải:
a) \(A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{-20}{41}+\dfrac{5}{13}+\dfrac{-21}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{5}{13}+\dfrac{-21}{41}+\dfrac{-20}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}\left(\dfrac{5}{7}+1\right)+\dfrac{-41}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{12}{7}+\left(-1\right)\)
\(\Leftrightarrow A=\dfrac{60}{91}+\left(-1\right)=-\dfrac{31}{91}\)
Vậy ...
b) \(B=\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{12}{11}-\dfrac{5}{7}.\dfrac{7}{11}\)
\(\Leftrightarrow B=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{12}{11}-\dfrac{7}{11}\right)\)
\(\Leftrightarrow B=\dfrac{5}{7}.\dfrac{7}{11}\)
\(\Leftrightarrow B=\dfrac{5}{11}\)
Vậy ...
c) \(C=\dfrac{-2}{3}+\dfrac{-5}{7}+\dfrac{2}{3}+\dfrac{-2}{7}\)
\(\Leftrightarrow C=\left(\dfrac{-2}{3}+\dfrac{2}{3}\right)+\left(\dfrac{-2}{7}+\dfrac{-5}{7}\right)\)
\(\Leftrightarrow C=0+\left(-1\right)=-1\)
Vậy ...
7)\(\dfrac{-19}{34}\left(\dfrac{17}{19}+\dfrac{49}{18}\right)+\dfrac{49}{18}\left(\dfrac{19}{34}-\dfrac{18}{7}\right)\)
=\(\dfrac{-19}{34}.\dfrac{17}{19}+\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}-\dfrac{18}{7}.\dfrac{49}{18}\)
=\(\dfrac{1}{2}+\left(\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}\right)-7\)
=\(\dfrac{1}{2}+\left[\dfrac{49}{18}\left(\dfrac{-19}{34}+\dfrac{19}{34}\right)\right]-7\)
=\(\dfrac{1}{2}+0-7=\dfrac{-13}{2}\)
8)\(\dfrac{29}{32}\left(\dfrac{41}{36}-\dfrac{32}{58}\right)-\dfrac{41}{36}\left(\dfrac{29}{32}+\dfrac{18}{41}\right)\)
=\(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{29}{32}.\dfrac{32}{58}-\dfrac{41}{36}.\dfrac{29}{32}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(\left(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{41}{36}\dfrac{29}{32}\right)-\dfrac{29}{32}.\dfrac{32}{58}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(0-\dfrac{1}{2}+\dfrac{1}{2}=0\)
a)P=\(\dfrac{-2}{7}+\dfrac{14}{29}+\dfrac{12}{33}+\dfrac{15}{29}+\dfrac{21}{33}+\dfrac{2}{7}\)
=\(\left(\dfrac{-2}{7}+\dfrac{2}{7}\right)+\left(\dfrac{14}{29}+\dfrac{15}{29}\right)+\left(\dfrac{12}{33}+\dfrac{21}{33}\right)\)
=0+1+1=2
b)\(\dfrac{2}{7}.\dfrac{5}{19}+\dfrac{2}{7}.\dfrac{14}{19}+\dfrac{21}{19}-\dfrac{2}{7}.\dfrac{1}{5}\)
=\(\dfrac{2}{7}.\left(\dfrac{5}{19}+\dfrac{14}{19}-\dfrac{1}{5}\right)+\dfrac{21}{19}\)
=\(\dfrac{2}{7}.\dfrac{4}{5}+\dfrac{21}{19}=\dfrac{887}{665}\)
\(-\dfrac{5}{7}\left(\dfrac{-19}{41}+-\dfrac{21}{41}+1\right)=-\dfrac{5}{7}.\dfrac{1}{41}=-\dfrac{5}{287}\)
\(=\dfrac{-5}{7}\left(\dfrac{19}{41}+\dfrac{21}{41}-1\right)=\dfrac{-5}{7}\cdot\dfrac{-1}{41}=\dfrac{5}{287}\)