Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
biên luân ban tu lm nhe mk chi ghi hê pt ra thôi \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{2}\end{cases}}\) ban tu giai nhe
Gọi tg người thứ nhất làm riêng và hoàn thành cv là x
tg người thứ 2 làn riêng hoàn thành cv là y (x,y>0)
vi 2 người cùng làm chung trong 8h thì xong cv nên \(\dfrac{8}{x}+\dfrac{8}{y}=1\) (1)
vì nếu người thứ nhất làm trong 1h30p=3/2h và ng thứ 2 lm tiếp 3h thì đc 25% cv nên \(\dfrac{3}{2x}+\dfrac{3}{y}=\dfrac{1}{4}\) (2)
từ 1 và 2 ta có hpt \(\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=1\\\dfrac{3}{2x}+\dfrac{3}{y}=\dfrac{1}{4}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=12\left(tm\right)\\y=24\left(tm\right)\end{matrix}\right.\)( tự giải hệ và kết luận)
24 gio thi xong
bai nay lop 5
tk minh nha
happy new year
Nhưng bài này là giải bài toán bằng cách lập hệ phương trình, không phải giải theo cấp 1
Công suất làm việc mỗi giờ của người thứ nhất, người thứ hai lần lượt là a,b (a,b>0)
Ta lập hpt:
\(\left\{{}\begin{matrix}4a+4b=1\\a+2b=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{12}\end{matrix}\right.\)
Vậy nếu làm một mình người thứ nhất cần 6 giờ để hoàn thành công việc, người thứ hai cần đến 12 giờ để hoàn thành công việc đó.