K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

                                                         Đề luyện thi HSG số 4

Bài 1 (4 điểm)

a) Tính giá trị biểu thức (S – P)2017, biết:

\(S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} +...+ \frac{1}{2013} - \frac{1}{2014} + \frac{1}{2015}\)

\(P = \frac{1}{1008} + \frac{1}{1009} + \frac{1}{1010} +...+ \frac{1}{2014} + \frac{1}{2015}\)

b) Tính giá trị biểu thức \(B = [\frac{4}{11} . (\frac{1}{25})^0 + \frac{7}{22} . 2]^{2016} - (\frac{1}{2^2} : \frac{8^2}{4^4})^{2017}\)

Bài 2 (6,0 điểm)

a) Tìm x biết: \(|2x + 3| = x + 2\)

b) Tìm số nguyên dương n biết: \(\frac{4^5 + 4^5 + 4^5 + 4^5}{3^5 + 3^5 + 3^5} . \frac{6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5}{2^5 + 2^5} = 2^n\)

c) So sánh \(\sqrt{8} - 1\) và \(2\)

d) Tìm x, y, z biết: \(\left\{\begin{matrix}\frac{3|x| + 5}{3} = \frac{3|y| - 1}{5} = \frac{3 - z}{7}\\2|z| + 7|y| + 3z = -14 \end{matrix}\right.\)

Bài 3 (3,0 điểm) Cho hàm số \(y = |2 - x| - |x + 2| \)         (1)

a) Vẽ đồ thị hàm số (1)

b) Dùng đồ thị hàm số (1), tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(A = |2 - x| - |x + 2| - 2017\)

Bài 4 (6,0 điểm) Cho \(\Delta ABC \) \((\hat{C} > 90^o)\). Lấy M là trung điểm của BC. Đường thẳng đi qua M và vuông góc với tia phân giác của \(\widehat{BAC}\) tại H cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:

a) HE = HF

b) \(2\widehat{BME} = \widehat{ACB} - \hat{B}\)

c) \(\frac{EF^2}{4} + AH^2 = AE^2\)

d) BE = CF

Bài 5 (1,0 điểm) Chứng minh P < 1 biết \(P = \frac{1}{3^2} - \frac{1}{3^4} + \frac{1}{3^6} - \frac{1}{3^8} + ...+ \frac{1}{3^{2006}} - \frac{1}{3^{2008}}\)

                                                                   --- Hết ---

 

 

 

 

 

 

 

 

 

 

 

0
                                      Đề luyện thi HSG số 5Bài 1 (3 điểm) Thực hiện phép tính:a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3}...
Đọc tiếp

                                      Đề luyện thi HSG số 5

Bài 1 (3 điểm) Thực hiện phép tính:

a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)

b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)

c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3} . (1 + 2 +3) +\frac{1}{4} . (1 + 2 + 3 + 4) + ...+ \frac{1}{2015} . (1 + 2 + 3 +...+2015)\)

Bài 2 (10 điểm) Tìm x, y, z biết:

a) \((1 - x) . (2x + 3) < 0\)

b) \((2x - 1)^4 = 16\)

c) \((2x + 1)^4 = (2x + 1)^6\)

d) \(\frac{x - 1}{-15} = \frac{-60}{x-1}\)

e) \(-4x . (x - 5) - 2x . (8 - 2x) = -3\)

f) \(3x = 27; 7y = 5z \) và \(x - 7 + z = 32\)

g) \(\frac{2x + 1}{5} = \frac{3y - 2}{7} = \frac{2x + 3y - 1}{6x}\)

h) \(\frac{x+6}{2002} + \frac{x + 5}{2003} + \frac{x + 4}{2004} = \frac{x + 3}{2005} + \frac{x + 2}{2006} + \frac{x + 1}{2007}\)

Bài 3 (1,5 điểm) Bốn lớp 7A, 7B, 7C, 7D đi lao động trồng cây. Biết rằng số cây trồng của bốn lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với 0,8; 0,9; 1; 1,1 và lớp 7B trồng nhiều hơn lớp 7A là 5 cây. Tính số cây mỗi lớp đã trồng.

Bài 4 (1,5 điểm)

a) Tìm các số a1, a2, a3,..., a100, biết \(\frac{a_{1} - 1}{100} = \frac{a_{2} - 2}{99} = \frac{a_{3} - 3}{98} =...= \frac{a_{100} - 100}{1}\) và \(a_{1} + a_{2} + a_{3} +...+ a_{100} = 10100\)

b) Biết rằng: \(1^4 + 2^4 + 3^4 +...+ 10^4 = 25333\). Tính \(S = 2^4 + 4^4 + 6^4 +...+ 20^4\)

Bài 5 (1,5 điểm) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện: \(\frac{y + z -x}{x} = \frac{z + x -y}{y} = \frac{x +y - z}{z}\). Hãy tính giá trị của biểu thức \(A = (1 + \frac{x}{y})(1 + \frac{y}{x})(1 + \frac{z}{x})\)

Bài 6 (3,0 điểm) Cho \(\Delta ABC\), gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB, trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh rằng:

a) Ba điểm E, A, D thẳng hàng

b) A là trung điểm của ED

 

4
29 tháng 12 2018

Bài easy quá mà!

4. a) Áp dụng tỉ dãy số bằng nhau:

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)

\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)

Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)

\(a_2-2=99\Leftrightarrow a_2=101\)

.......v.v...

\(a_{100}-100=1\Leftrightarrow a_{100}=101\)

Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)

29 tháng 12 2018

Bài 5/

Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)

Suy ra:

 \(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")

Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~ 

20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)