Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n-2<n+4 nên C là số nguyên tố khi và chỉ khi:
\(\left\{{}\begin{matrix}n-2=1\\n+4\text{ là số nguyên tố}\end{matrix}\right.\)
\(\Rightarrow n=3\)
do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có
\(n^2+2006=m^2\)
\(\Leftrightarrow m^2-n^2=2006\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)
trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha
b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)
1) Ta có :
+ a=1.2.3.4....101 chia hết cho 2 ; 2 cũng chia hết cho 2. Vậy 1.2.3.4...101+2 chia hết cho 2. Vì nó lớn hơn 2 nên nó là hợp số.
+a=1.2.3.4.....101 chia hết cho 3 ; 3 cũng chia hết cho 3. Vậy 1.2.3.4....101+3 chia hết cho 3. Vì nó lớn hơn 3 nên nó là hợp số.
........ ( cứ như thế )
+a=1.2.3.4....101 chia hết cho 101 ; 101 cũng chia hết cho 101. Vậy 1.2.3.4.....101+101 chia hết cho 101. Vì nó lớn hơn 101 nên nó là hợp số.
=> a=1.2.3.4......101 là hợp số.
k nha !!!!!
n2 + 6n = n(n + 6) chia hết n
Mà n2 + 6n phải là số nguyên tố => n = 1
Thử lại: n(n + 6) = 7 nguyên tố
Vậy n = 1
\(C=n^3-n^2-n-2\)
\(=\left(n^3-1\right)-n^2-n-1\)
\(=\left(n-1\right)\left(n^2+n+1\right)-\left(n^2+n+1\right)\)
\(=\left(n-2\right)\left(n^2+n+1\right)\)
Để C là số nguyên tố \(\Leftrightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=3\\n\left(n+1\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=3\\n=0\end{cases}}}\)
Với \(n=3\) thì \(C=\left(3-2\right)\left(3^2+3+1\right)=13\) là số nguyên tố (TM)
Với \(n=0\) thì \(C=\left(0-2\right)\left(0^2+0+1\right)=-2\) không là số nguyên tố (Loại)
Vậy với \(n=3\) thì C là số nguyên tố
thanks nha