K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Vận dụng các kiến thức đã học để làm bài kiểm tra này

25 tháng 2 2019

BCAAB

25 tháng 2 2019

Câu 1 : B

Câu 2 : C

Câu 3 : A

Câu 4 : A

Câu 5 : D

28 tháng 2 2019

câu 1 chọn D 

câu 2 chọn D

câu 3 chọn E tất cả đều đúng

câu 4 chọn B

28 tháng 2 2019

Câu 1 : C

Câu 2 : D

Câu 3 : D

Câu 4 : B

Câu 5 : Giải :

A B M I A B M I a) b)

Chứng minh :

Xét 2 trường hợp :

  • \(M \in AB\) (h.a) Vì MA = MB nên M là trung điểm của đoạn thẳng AB \(\Rightarrow\) M thuộc đường trung trực của đoạn thẳng AB.
  • \(M\notin AB\) (h.b) : Kẻ đoạn thẳng nối M với trung điểm \(I\) của đoạn thẳng AB.

Ta có \(\triangle MAI=\triangle MBI\) (c.c.c) \(\Rightarrow\widehat{I_1}=\widehat{I_2}\). Mặt khác \(\widehat{I_1}+\widehat{I_2}=180^0\Rightarrow\widehat{I_1}=\widehat{I_2}=90^0\). Vậy \(MI\) là đường trung trực của đoạn thẳng AB. 

26 tháng 2 2019

Câu 1 : D

Câu 2 : D

Câu 3 : C

Câu 4 : Tam giác luôn là "tam giác đơn", "tam giác lồi" vì số đo các góc trong luôn nhỏ hơn 1800.

Câu 5 : Sai. Vì không có tam giác nào có trọng tâm nằm ngoài tam giác.

26 tháng 2 2019

Mình chưa hiểu lắm về câu 3 và câu 4 của bạn

26 tháng 4 2019

a) So sánh ∠B và ∠C

Xét ΔABC ta có: AC > AB (8 > 6) ⇒ ∠C > ∠B (định lí)

b) Tính BC ?

Áp dụng định lí Pytago vào ΔABC vuông tại A

Ta có: BC2 = AB2 + AC2

                  = 62 + 82 

                  = 36 + 64 = 100

⇒ BC = 10 (cm) 

c) EA = EH

Xét hai tam giác vuông ABE và HBE có:

∠ABE = ∠HBE (BE là phân giác)

BE : cạnh chung

Do đó: ΔABE = ΔHBE (cạnh huyền - góc nhọn)

⇒ EA = EH (hai cạnh tương ứng)

30 tháng 12 2018

vuông tại A nhé

a, xét tam giác ABD, tam giác HBD có

                                                           AB=BH ;góc ABD= góc HBD ( vì phân giác) ,BD chung

                              suy ra 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh

b, vì 2 tam giác bằng nhau ( câu a) suy ra góc BAD= góc BDH         mà BAD= 90 độ           suy ra BHD =90 độ hay DH vuông góc với BC

C, nếu góc C =60 độ    suy ra góc B = 0 độ     suy ra góc ABD= 15 độ      suy  ra góc ADB = 90 độ -15 độ = 75 độ ( phụ nhau)

a,A+B+C=180 độ \(\Rightarrow C=30\)độ

\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)

b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK

c,BDC cân vì có DBC=DCB=30 độ 

d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)

30 tháng 6 2021

thế kb=kc cm kiểu j vaayj bn

 

12 tháng 1 2016

bài này có lời giải trong sbt mà @@

2 tháng 11 2021
  
  
  

 

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng