Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(B_1\) là biến cố "sinh viên A đạt môn thứ nhất"
\(B_2\) là biến cố "sinh viên A đạt môn thứ hai"
\(\Rightarrow P\left(B_1\right)=0,8\) ; \(P\left(B_2|B_1\right)=0,6\) ; \(P\left(B_2|\overline{B_1}\right)=0,3\)
a/ Xác suất đạt môn thứ hai:
\(P\left(B_2\right)=P\left(B_1\right).P\left(B_2|B_1\right)+P\left(\overline{B_1}\right)P\left(B_2|\overline{B_1}\right)\)
\(=0,8.0,6+0,2.0,3=0,54\)
b/ Xác suất để đạt ít nhất 1 môn:
\(P\left(B_1\cup B_2\right)=P\left(B_1\right)+P\left(B_2\right)-P\left(B_1B_2\right)\)
\(=P\left(B_1\right)+P\left(B_2\right)-P\left(B_1\right)P\left(B_2|B_1\right)=0,86\)
a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là 93%. 87% = 0,8091
b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là
7%. 13% = 0,0091
c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là
93%.13% + 7%.87% = 0,1818
d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là
0,8091 + 0,1818 = 0,9909
a: Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:
\(0.93\cdot0.87=0.8091\)
b: Xác suất để cả hai người được chọn không đạt yêu cầu là:
(1-0,93)(1-0,87)=0,13*0,07=0,091
c: Xác suất để chỉ có 1 người đạt yêu cầu là:
0,93(1-0,87)+0,87(1-0,93)
=0,93*0,13+0,87*0,07
=0,1818
d: Để có ít nhất 1 trong 2 người đạt yêu cầu thì:
0,8091 + 0,1818 = 0,9909
Xét 2 biến cố: A: “Bạn Mai thi được từ 7 điểm trở lên” và B: “Bạn Thi thi được từ 7 điểm trở lên”
Do \(C = A \cap B \Rightarrow P(C) = P(A).P(B) = 0,8.0,9 = 0,72\)
Gọi A là biến cố cầu thủ thứ nhất ghi bàn
B là biến cố cầu thủ thứ hai ghi bàn
X là biến cố ít nhất 1 trong hai cầu thủ ghi bàn
Suy ra: X ¯ = A ¯ . B ¯
Vì hai biến cố A ¯ ; B ¯ độc lập với nhau nên ta có:
P ( X ¯ ) = P ( A ¯ ) . P ( B ¯ ) = ( 1 − 0 , 8 ) . ( 1 − 0 , 7 ) = 0 , 06
Do đó, xác suất để có ít nhất 1 trong hai cầu thủ ghi bàn là:
P ( X ) = 1 − P ( X ¯ ) = 1 − 0 , 06 = 0 , 94
Chọn đáp án B