K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng: A. n p B. n > p C. n=p D. n=1 2) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng...
Đọc tiếp

1) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một

số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

A. n p B. n > p

C. n=p D. n=1

2) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np ( p là một

số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

A. k > p B. k p

C. k = p D. k < p

3) Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một số tự nhiên), ta tiến hành hai bước:

Bước 1, kiểm tra mệnh đề A(n) đúng với n=p

Bước 2, giả thiết mệnh đề A(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng

nó cũng đúng với n=k+1

Trong hai bước trên:

A. Chỉ có bước 1 đúng. B. Chỉ có bước 2 đúng.

C. Cả hai bước đều đúng. D. Cả hai bước đều sai.

4) Cho dãy số( un )là dãy số tăng. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Mệnh đề un+1>un,nℕ* C.Mệnh đề un+1<un,nℕ*

B. Mệnh đề un+1un,nℕ* D. Mệnh đềun+1un,nℕ*

5) Cho dãy số (un) là dãy số bị chặn. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Mệnh đề m<un< M, nℕ* B. Mệnh đề mun M, nℕ*

C. Mệnh đề un M, nℕ* D. Mệnh đề un M, nℕ*

6) Cho dãy số (un) là dãy số bị chặn dưới bởi số m. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Mệnh đề un m, nℕ* B. Mệnh đề un m, nℕ*

C. Mệnh đề un> m, nℕ* D. Mệnh đề un< m, nℕ*

7) Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu u1, công sai d?

A. un = un + d B. un = u1+ (n+1)d

C. un = u1 – (n–1)d D. un = u1 + (n–1)d

8) Cho dãy số (un), biết un=3n. Số hạng un+1 bằng:

A. Bằng 3n.3 B. Bằng3n+3

C. Bằng 3n+1 D. Bằng 3(n+1)

9) Cho dãy số( nn) biết un=1n+1. Khi đó u10bằng:

A. Bằng111 B. Bằng 11

C. Bằng 110 D. Bằng 10

10) Cho cấp số nhân -4,x,-9 . Hãy chọn kết quả đùng trong các kết quả sau:

A. x=-36 B. x=6

C. x=36 D. x=-6,5

11) Cho dãy số (un )biết un =3n2+1 . Trong các mệnh đề sau, mệnh đề nào đúng?

A. un bị chặn dưới.

B. unbị chặn trên.

C. un bị chặn

D. un không bị chặn.

12) Cho cấp số cộngu1=-3, u6=27 . Công sai của cấp số cộng đó là:

A. 5 B. 6

C. 7 D. 8

13) Cho cấp số cộng u1=3, u8=24 . Công sai của cấp số cộng đó là:

A. 3 B. 4

C. -3 D. 5

14) Cho cấp số cộng u1=-0,1,d=0,1 . Số hạng thứ 7 của cấp số cộng đó là:

A. 1,6 B. 0,5

C. 6 D. 0,6

15) Viết 5 số xen giữa hai số 25 và 1 để được CSC có bảy số hạng

A. 21; 17; 13; 9; 5 B. 21; -17; 13; -9; 5

C. -21; 17; -13; 9; 5 D. 21; 16; 13; 9; 5

16) Xác định x để 3 số : 1–x;x2; 1+x lập thành một cấp số cộng?

A. Không có giá trị nào của x B. x = ±2

C. x = ±1 D. x = 0

17) Cho dãy số 12;b;2. Chọn b để dãy số đã cho lập thành cấp số nhân?

A. b = –1 B. b = 1

C. b = 2 D. Không có giá trị nào của b

18) Cho cấp số nhân:-15;a;-1125. Giá trị của a là:

A. a=15 B. a=125

C. a=15 D. a=5

19) Cho dãy số: –1; x; 0,64. Chọn x để dãy số đã cho lập thành cấp số nhân?

A. Không có giá trị nào của x B. x = –0,008

C. x = 0,008 D. x = 0,004

20) Cho dãy số(un )biết un=nn+1. Trong các mệnh đề sau, mệnh đề nào đúng?

A. un bị chặn dưới. B. un bị chặn trên.

C. un bị chặn. D. un không bị chặn.

21) Cho Sn=112+123+134+......+1n.(n+1) với nℕ* Mệnh đề nào sau đây đúng?

A. Mệnh đề S3= 14 B. Mệnh đề S2=23

C. Mệnh đề S2=16 D. Mệnh đề S3=112

22) Cho dãy số(un )biết un=1+n2n+1. Số 815 là số hạng thứ bao nhiêu?

A. 8 B. 6

C. 5 D. 7

23) Cho dãy số: –1; 1; –1; 1; –1; … Khẳng định nào sau đây là đúng?

A. Dãy số này không phải là cấp số nhân B. Số hạng tổng quát un =1n =1

C. Dãy số này là cấp số nhân có u1 = –1, q = –1 D. Số hạng tổng quát un= (-1)2n .

24) Cho cấp số nhân (un )với u1=-12, u7 = –32. Tìm q ?

A. q=12 B. q=2

C. q =4 D. q=1

25) Cho cấp số nhân (un )với u1 = 3, q = –2. Số 192 là số hạng thứ mấy của (un )?

A. Số hạng thứ 5 B. Số hạng thứ 6

C. Số hạng thứ 7 D. Không là số hạng của cấp số đã cho.

26) Cho cấp số nhân có u2=14,u5=6 . Tìm q vàu1 .

A. q=12 ;u1=12 B. q =-12 ;u1=-12

C. q =4 ;u1=116 D. q =-4 ;u1=-116

27) Cho cấp số cộng: –2 ; –5 ; –8 ; –11 ; –14 ; … Tìm d và tổng của 20 số hạng đầu tiên?

A. d = 3; S20 = 510 B. d = –3; S20= –610

C. d = –3; S20 = 610 D. d = 3; S20 = 610

28) Cho dãy số (un )với un =7-2n. Khẳng định nào sau đây là sai?

A. 3 số hạng đầu của dãy: u1=5; u2=3; u3=1

B. Số hạng thứ n + 1=un+1=8-2n

C. Là cấp số cộng có d = – 2

D. Số hạng thứ 4: u4=-1

29) Cho dãy số (un ) có un=1n+2. Khẳng định nào sau đây sai?

A. là cấp số cộng có u1=12;un =1n+2

B. là một dãy số giảm dần

C. là một cấp số cộng

D. bị chặn trên bởi M = 12

30) Cho (un) có :u1=-0,1;d=1 . Khẳng định nào sau đây là đúng?

A. Số hạng thứ 7 của cấp số cộng này là: 0,6

B. Cấp số cộng này không có hai số 0,5 và 0,6

C. Số hạng thứ 6 của cấp số cộng này là: 0,5

D. Số hạng thứ 4 của cấp số cộng này là: 3,9

0
3 tháng 4 2017

a) 2cos2x - 3cosx + 1 = 0 (1)

Đặt : t = cosx với điều kiện -1 \(\le t\le1\)

(1)\(\Leftrightarrow\) 2t2 - 3t + 1= 0

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}=cosx\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)}\)

22 tháng 5 2017

a) Đkxđ: D = R
Đặt \(cosx=t;\left|t\right|\le1\). Phương trình trở thành:m\(2t^2-3t+1=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\\t=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\).
Với \(t=1\) ta có \(cosx=1\)\(\Leftrightarrow x=k2\pi\).
Với \(t=\dfrac{1}{2}\) ta có \(cosx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\).
Vậy phương trình có 3 họ nghiệm là:
- \(x=k2\pi\);
- \(x=\dfrac{\pi}{3}+k2\pi\);
- \(x=-\dfrac{\pi}{3}+k2\pi\).

6 tháng 9 2019

câu d) là \(-\frac{3\pi}{2}< x< \frac{3\pi}{2}\) mình vã quá nên ghi nhầm nha mọi người

NV
9 tháng 7 2020

a/ \(cos\left(2x+\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow2x+\frac{\pi}{6}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)

b/ \(cos\left(4x-\frac{\pi}{3}\right)=1\)

\(\Leftrightarrow4x-\frac{\pi}{3}=k2\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)

c/ \(cos\left(2x+25^0\right)=-\frac{\sqrt{2}}{2}=cos135^0\)

\(\Rightarrow\left[{}\begin{matrix}2x+25^0=135^0+k360^0\\2x+25^0=-135^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=55^0+k180^0\\x=-80^0+k180^0\end{matrix}\right.\)

d/ \(cot\left(3x+10^0\right)=\frac{\sqrt{3}}{3}=cot60^0\)

\(\Rightarrow3x+10^0=60^0+k180^0\)

\(\Rightarrow x=\frac{50^0}{3}+k60^0\)

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)

11 tháng 11 2019

D

NV
29 tháng 9 2020

\(sina+sinb+sinc+3=0\)

\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)

Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)

\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)

\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)

b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)

\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)

\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)

\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)

NV
6 tháng 6 2020

1/ a/ \(y'=-5sinx+\frac{3}{cos^2\left(x+15^0\right)}\)

b/ \(y'=\frac{6cos3x\left(-4cosx-5\right)-8sinx.sin3x}{\left(4cosx+5\right)^2}\)

2/ \(y'=-3cosx-\frac{15}{sin^23x}\Rightarrow y'\left(\frac{\pi}{4}\right)=-3cos\left(\frac{\pi}{4}\right)-\frac{15}{sin^2\left(\frac{3\pi}{4}\right)}=-\frac{60+3\sqrt{2}}{2}\)

3/ \(y'=4x-5\)

a/ \(y'\left(2\right)=3\) ; \(y\left(2\right)=2\)

Tiếp tuyến: \(y=3\left(x-2\right)+2=3x-4\)

b/ Tiếp tuyến song song \(y=2x-3\Rightarrow\) có hệ số góc bằng 2

\(\Rightarrow4x_0-5=2\Rightarrow x_0=\frac{7}{4}\Rightarrow y\left(\frac{7}{4}\right)=\frac{11}{8}\)

Tiếp tuyến: \(y=2\left(x-\frac{7}{4}\right)+\frac{11}{8}\)

c/ \(-x+3y-1=0\Rightarrow y=\frac{1}{3}x+\frac{1}{3}\)

Tiếp tuyến vuông góc với d nên có hệ số góc bằng \(-3\)

\(\Rightarrow4x_0-5=-3\Rightarrow x_0=\frac{1}{2}\Rightarrow y\left(\frac{1}{2}\right)=2\)

Tiếp tuyến: \(y=-3\left(x-\frac{1}{2}\right)+2\)

5 tháng 6 2020

3/ a, y=\(2x^2-5x+4\)

Ta có: \(x_o=2\)-> \(y_0=2\)

-> \(f'\left(x_0\right)=3\)

Nên ta có pttt: y'= 3x - 4

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\) A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\) B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\) C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\) D. \(\frac{2x-2}{\sqrt{x^2-2x}}\) Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2 A. 1 B. 0 C. 3 D. 2 Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\) A. y' =...
Đọc tiếp

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\)

A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\)

B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\)

C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\)

D. \(\frac{2x-2}{\sqrt{x^2-2x}}\)

Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2

A. 1 B. 0 C. 3 D. 2

Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\)

A. y' = \(\frac{2}{\left(x-2\right)^2}\)

B. y' = \(\frac{-11}{\left(x-2\right)^2}\)

C. y' = \(\frac{-5}{\left(x-2\right)^2}\)

D. y' = \(\frac{10}{\left(x-2\right)^2}\)

Câu 4 : Trên đồ thị của hàm số y = \(\frac{3x}{x-2}\) có điểm M(x0 ; y0) (x0<0) sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 3/4 . Khi đó x0 + 2y0 bằng

A. \(-\frac{1}{2}\) B. -1 C. \(\frac{1}{2}\) D. 1

Câu 5 : Biết hàm số f (x) - f (2x) có đạo hàm bằng 18 tại x = 1 và đạo hàm bằng 1000 tại x = 2 . Tính đạo hàm của hàm số f (x) - f (4x) tại x = 1

A. -2018 B. 2018 C. 1018 D. -1018

Câu 6 : Tìm m để hàm số y = \(\frac{\left(m+1\right)x^3}{3}-\left(m+1\right)x^2+\left(3m+2\right)+1\) có y' \(\le0\) , \(\forall x\in R\)

A. \(m\le-\frac{1}{2}\)

B. m < -1

C. m \(\le1\)

D. m \(\le-1\)

Câu 7 : Gọi d là tiếp tuyến của đồ thị hàm số y = f (x) = -x3 + x tại điểm M(-2;6) . Hệ số góc của (d) là

A. -11 B. 11 C. 6 D. -12

Câu 8 : Cho hàm số f (x) = -x3 + 3mx2 - 12x + 3 với m là tham số thực . Số giá trị nguyên của m để f' (x)\(\le0\) với \(\forall x\in R\)

A. 1 B. 5 C. 4 D. 3

Câu 9 : Phương trình tiếp tuyến của đường cong y = x3 + 3x2 -2 tại điểm có hoành độ x0 = 1 là

A. y = -9x + 7 B. y = -9x - 7 C. y = 9x + 7 D. y = 9x - 7

Câu 10 : Có bao nhiêu điểm thuộc đồ thị hàm số y = \(\frac{2x-1}{x-1}\) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2019 ?

A. Vô số B. 0 C. 1 D. 2

Câu 11 : Phương trình tiếp tuyến của đồ thị hàm số y = \(\frac{x-1}{x+2}\) tại điểm có hoành độ bằng -3 là

A. y = -3x + 13 B. y = -3x - 5 C. y = 3x + 5 D. y = 3x + 13

Câu 12 : Cho hàm số y = -2x3 + 6x2 -5 có đồ thị (C) . Phương trình tiếp tuyến của (C) tại điểm M thuộc (C) và có hoành độ bằng 3 là

A. y = -18x + 49 B. y = 18x + 49 C. y = 18x - 49 D. y = -18x - 49

Câu 13 : Hệ số góc k của tiếp tuyến đồ thị hàm số y = x3 + 1 tại điểm M(1;2) là

A. k = 5 B. k = 4 C. k = 3 D. k = 12

Câu 14 : Cho hàm số y = \(-\frac{1}{3}x^3-2x^2-3x+1\) có đồ thị (C) . Trong các tiếp tuyến với (C) , tiếp tuyến có hệ số góc lớn nhất bằng bao nhiêu ?

A. k = 3 B. k = 2 C. k = 0 D. k = 1

Câu 15 : Cho hàm số y = \(\frac{2x-3}{x-2}\) có đồ thị (C) và hai đường thẳng d1 : x = 2 , d2 : y = 2 . Tiếp tuyến bất kì của (C) cắt d1 và d2 lần lượt tại A và B . Khi AB có độ dài nhỏ nhất thì tổng các hoành độ tiếp điểm bằng

A. -3 B. -2 C. 1 D. 4

Câu 16 : Tính vi phân của hàm số y = x2

A. dy = 2xdx B. dy = dx C. dy = -2xdx D. dy = xdx

Câu 17 : Cho hình chóp S.ABC có SA\(\perp\) (ABC) . Gọi H , K lần lượt là trực tâm các tam giác SBC và ABC . Mệnh đề nào sai trong các mệnh đề sau ?

A. \(BC\perp\left(SAH\right)\) B. \(HK\perp\left(SBC\right)\)

C. \(BC\perp\left(SAB\right)\) D. SH , AK và BC đồng quy

Câu 18 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết rằng SA = SC , SB = SD . Khẳng định nào sau đây là đúng ?

A. \(CD\perp AC\) B. \(CD\perp\left(SBD\right)\) C. \(AB\perp\left(SAC\right)\) D. \(SO\perp\left(ABCD\right)\)

Câu 19 : Cho hình chóp S.ABCD , ABCD là hình thang vuông tại A và B , AD = 2a , AB = BC = a , \(SA\perp\left(ABCD\right)\) . Trong các khẳng định sau , khẳng định nào sai ?

A. \(CD\perp\left(SBC\right)\) B. \(BC\perp\left(SAB\right)\) C. \(CD\perp\left(SAC\right)\) D. \(AB\perp\left(SAD\right)\)

Câu 20 : Hình chóp S.ABCD có đáy là hình vuông , hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy . AH , AK lần lượt là đường cao của tam giác SAB , tam giác SAD . Mệnh đề nào sau đây là sai ?

A. \(HK\perp SC\) B. \(SA\perp AC\) C. \(BC\perp AH\) D. \(AK\perp BD\)

Câu 21 : Cho hình chóp S.ABC có các cạnh SA , SB , SC đôi một vuông góc và SA = SB = SC . Gọi I là trung điểm của AB . Khi đó góc giữa 2 đường thẳng SI và BC bằng

A. 1200 B. 600 C. 900 D. 300

Câu 22 : Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi M là trung điểm của AB và \(\alpha\) là góc tạo bởi MC' và mặt phẳng (ABC) . Khi đó \(tan\alpha\) bằng

A. \(\frac{2\sqrt{7}}{7}\) B. \(\frac{\sqrt{3}}{2}\) C. \(\sqrt{\frac{3}{7}}\) D. \(\frac{2\sqrt{3}}{3}\)

Câu 23 : Cho hình chóp S.ABC có đáy là tam giác vuông tại B , AB = 3a , BC = 4a , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) . Biết SB = \(2a\sqrt{3}\)\(\widehat{SBC}=30^0\) . Tính \(d\left(B;\left(SAC\right)\right)\)

A. \(\frac{3a\sqrt{7}}{14}\) B. \(6a\sqrt{7}\) C. \(\frac{6a\sqrt{7}}{7}\) D. \(a\sqrt{7}\)

Câu 24 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và các cạnh bên bằng nhau . Gọi O là giao điểm của hai đường chéo của đáy . Tìm mặt phẳng vuông góc với SO ?

A. (SAC) B. (SBC) C. (ABCD) D. (SAB)

Câu 25 : Cho hình chóp S.ABC có đáy ABC là tam giác nhọn , cạnh bên SA = SB = SC . Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC) . Khi đó

A. H là tâm đường tròn ngoại tiếp tam giác ABC

B. H là tâm đường tròn nội tiếp tam giác ABC

C. H là trực tâm của tam giác ABC

D. H là trọng tâm của tam giác ABC

Câu 26 : Cho tứ diện ABCD có AB , BC , CD đôi một vuông góc với nhau và AB = a , BC = b , CD = c . Độ dài đoạn thẳng AD bằng

A. \(\sqrt{a^2+b^2+c^2}\)

B. \(\sqrt{-a^2+b^2+c^2}\)

C. \(\sqrt{a^2+b^2-c^2}\)

D. \(\sqrt{a^2-b^2+c^2}\)

help me !!!!!! giải chi tiết từng câu giúp mình với ạ

10
NV
12 tháng 6 2020

25.

H là hình chiếu của S lên (ABC)

Do \(SA=SB=SC\Rightarrow HA=HB=HC\)

\(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC

26.

\(\left\{{}\begin{matrix}AB\perp BC\\AB\perp CD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\) \(\Rightarrow AB\perp BD\)

\(\Rightarrow\Delta ABD\) vuông tại B

Pitago tam giác vuông BCD (vuông tại C):

\(BC^2+CD^2=BD^2\Rightarrow BD^2=b^2+c^2\)

Pitago tam giác vuông ABD:

\(AD^2=AB^2+BC^2=a^2+b^2+c^2\)

\(\Rightarrow AD=\sqrt{a^2+b^2+c^2}\)

NV
12 tháng 6 2020

23.

Gọi H là chân đường cao hạ từ S xuống BC

\(\Rightarrow BH=SB.cos30^0=3a\) ; \(SH=SB.sin30^0=a\sqrt{3}\) ; \(CH=4a-3a=a\)

\(\Rightarrow BC=4HC\Rightarrow d\left(B;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HE\perp AC\) ; từ H kẻ \(HF\perp SE\Rightarrow HF\perp\left(SAC\right)\)

\(\Rightarrow HF=d\left(H;\left(SAC\right)\right)\)

\(HE=CH.sinC=\frac{CH.AB}{AC}=\frac{a.3a}{5a}=\frac{3a}{5}\)

\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{SH^2}\Rightarrow HF=\frac{HE.SH}{\sqrt{HE^2+SH^2}}=\frac{3a\sqrt{7}}{14}\)

\(\Rightarrow d\left(B;\left(SAC\right)\right)=4HF=\frac{6a\sqrt{7}}{7}\)

24.

\(SA=SC\Rightarrow SO\perp AC\)

\(SB=SD\Rightarrow SO\perp BD\)

\(\Rightarrow SO\perp\left(ABCD\right)\)

9 tháng 4 2017

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0