Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
\(a)\frac{8}{9}x-\frac{2}{3}=\frac{1}{3}x+1\frac{1}{3}\)
\(\Rightarrow\frac{8}{9}x-\frac{1}{3}x=\frac{2}{3}+1\frac{1}{3}\)
\(\Rightarrow\frac{5}{9}x=\frac{2}{3}+\frac{4}{3}\)
\(\Rightarrow\frac{5}{9}x=2\Rightarrow x=2\div\frac{5}{9}=\frac{18}{5}\)
\(b)(\frac{-2}{5}+\frac{3}{7})-(\frac{4}{9}+\frac{12}{20}-\frac{13}{25})+\frac{7}{35}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{3}{5}-\frac{13}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{15}{25}-\frac{13}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{2}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-\frac{118}{25}+\frac{1}{5}\)
Làm nốt
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
a, 26/x + 3 nguyên
=> 26 ⋮ x + 3
=> x + 3 thuộc Ư(26)
=> x + 3 thuộc {-1; 1; -2; 2; -13; 13; -26; 26}
=> x thuộc {-4; -2; -5; -1; -16; 10; -29; 23}
vậy_
b, x+6/x+1 nguyên
=> x + 6 ⋮ x + 1
=> x + 1 + 5 ⋮ x + 1
=> 5 ⋮ x + 1
=> x + 1 thuộc Ư(5)
=> x + 1 thuộc {-1; 1; -5; 5}
=> x thuộc {-2; 0; -6; 4}
vậy_
c, x-2/x+3 nguyên
=> x - 2 ⋮ x + 3
=> x + 3 - 5 ⋮ x + 3
=> 5 ⋮ x + 3
=> x + 3 thuộc Ư(5)
=> x + 3 thuộc {-1; 1; -5; 5}
=> x thuộc {-4; -2; -8; 2}
vậy_
\(a,\frac{26}{x+3}\in Z\Leftrightarrow26\)\(⋮\)\(x+3\)\(\Rightarrow x+3\inƯ_{26}\)
Mà \(Ư_{26}=\left\{\pm1;\pm2;\pm13;\pm26\right\}\)\(\Rightarrow...\)
\(b,\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=1+\frac{5}{x+1}\)
\(\frac{5}{x+1}\in Z\Leftrightarrow5\)\(⋮\)\(x+1\Rightarrow x+1\inƯ_5\)
MÀ \(Ư_5=\left\{\pm1;\pm5\right\}\)\(\Rightarrow...\)
\(c,\frac{x-2}{x+3}=\frac{x+3-3-2}{x+3}=1-\frac{5}{x+3}\)
\(\frac{5}{x+3}\in Z\Leftrightarrow\)\(5\)\(⋮\)\(x+3\Rightarrow x+3\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)\(\Rightarrow...\)
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
Bài 1 :
a, ( 9/24 + - 18/24 + 14/24 ) . 6/5 + 1/2
= 5/24 . 6/5 + 1/2
= 1/4 + 1/2
= 3/4
b, -3/7 . ( 5/9 + 4/9 ) + 17/7
= - 3/7 . 1 + 17/7
= -3/7 + 17/7
= 14/7
Bài 2 :
a, ( 2/3 + 1/2 ) . x = 5/12
7/6 . x = 5/12
x = 5/12 : 7/6
x = 5/14
b, 14/5 . x - 50 = 51 . 2/3
14/5 . x - 50 = 34
14/5 . x = 34 + 50
14/5 . x = 84
x = 84 : 14/5
x = 30
a) âm 5 phần 2
b) 2
a, \(-\frac{2}{5}x+\frac{4}{3}=\frac{7}{3}\)
\(-\frac{2}{5}x\)=\(\frac{7}{3}-\frac{4}{3}\)
\(-\frac{2}{5}x\) = 1
\(x=\frac{5}{-2}\)
b, \(\left(x\times\frac{1}{2}-\frac{3}{7}\right)=\frac{8}{7}\times\frac{1}{2}\)
\(x\times\frac{1}{2}-\frac{3}{7}=\frac{4}{7}\)
.............................................
\(x=2\)