K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

4. 4x2 + 4x + 1 = ( 2x + 1)2

5. \(\dfrac{1}{4}x-\dfrac{2}{3}xy+\dfrac{4}{9}y^2\) \(=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.\dfrac{2}{3}+\left(\dfrac{2}{3}y\right)^2\)

\(=\left(\dfrac{1}{2}x-\dfrac{2}{3}y\right)^2\)

6. \(4a^2-\dfrac{4}{3}ab+\dfrac{1}{9}b^2=\left(2a\right)^2-2.2a.\dfrac{1}{3}+\left(\dfrac{1}{3}b\right)^2=\left(2a-\dfrac{1}{3}b\right)^2\)

7.

\(9x^2+4xy+\dfrac{4}{9}y^2-25z^2=\left(3x+\dfrac{2}{3}y\right)^2-\left(5z\right)^2=\left(3x+\dfrac{2}{3}y-5z\right)\left(3x+\dfrac{2}{3}y+5z\right)\)

26 tháng 5 2018

x2 - 6x + 9 = (x-3)2

x2 - 2x + 1 - y2 = ( x-1)2 - y2 = ( x-1-y)(x-1+y)

4x2 +12xy +9y2 = ( 2x+3y)2

26 tháng 5 2018

cảm ơn bn nhiều!!!!

26 tháng 5 2018

1. \(x^4-2x^2+1=\left(x^2-1\right)^2\)

2. \(x^2+5x+\dfrac{25}{4}=x^2+2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)

3. \(16x^2-8x+1=\left(4x-1\right)^2\)

4. \(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x-y+1\right)\left(x+y\right)\)

5. \(\dfrac{1}{4}x^2-\dfrac{4}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{2}{3}y\right)\left(\dfrac{1}{2}x+\dfrac{2}{3}y\right)\)

6. \(a^2-2ab+b^2-x^2=\left(a-b\right)^2-x^2=\left(a-b-x\right)\left(a-b+x\right)\)

7. \(4x^2-20x+25-y^2=\left(2x-5\right)^2-y^2=\left(2x-5-y\right)\left(2x-5+y\right)\)

26 tháng 5 2018

bạn ơi bạn có thể giải thick cách lm đc ko

27 tháng 5 2018

1.(x^2-1)^2=[(x-1).(x+1]^2

2). (x+5/2)^2

3). {4x-1)^2

1: \(=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)=-\left(x+1\right)^2-1< =-1\)

Dấu '=' xảy ra khi x=-1

2: \(=-\left(4x^2-12x-10\right)\)

\(=-\left(4x^2-12x+9-19\right)\)

\(=-\left(2x-3\right)^2+19< =19\)

Dấu '=' xảy ra khi x=3/2

3: \(=-\left(x^2+4x+4-4\right)=-\left(x+2\right)^2+4< =4\)

Dấu '=' xảy ra khi x=-2

4 tháng 9 2020

1/   \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2.3xy+\left(3y\right)^2\)

\(=\left(2x-3y\right)^2\)

2/   \(x^3-y^6=x^3-\left(y^2\right)^3\)

\(=\left(x-y^2\right)\left(x^2+xy^2+y^4\right)\)

Làm tạm 2 phần đợi mik xíu

4 tháng 9 2020

4x2 - 12xy + 9y2 = ( 2x )2 - 2.2x.3y + ( 3y )2 = ( 2x - 3y )2

x3 - y6 = x3  - ( y)3 = ( x - y2 )( x2 + xy2 + y4 )

x6 - 6x4 + 12x2 - 8 = ( x2 )3 - 3.(x2)2.2 + 3.x2.22 - 23 = ( x2 - 2 )3

( x2 + 4y2 - 5 )2 - 16( x2y2 + 2xy + 1 ) = ( x2 + 4y2 - 5 )2 - 42( xy + 1 )2

                                                            = ( x2 + 4y2 - 5 )2 - ( 4xy + 4 )2

                                                            = [ ( x2 + 4y2 - 5 ) - ( 4xy + 4 ) ][ ( x2 + 4y2 - 5 ) + ( 4xy + 4 ) ]

                                                            = ( x2 + 4y2 - 5 - 4xy - 4 )( x2 + 4y2 - 5 + 4xy + 4 )

                                                            = [ ( x2 - 4xy + 4y2 ) - 9 ][ ( x2 + 4xy + 4y2 ) - 1 ]

                                                            = [ ( x - 2y )2 - 32 ][ ( x + 2y )2 - 12 ]

                                                            = ( x - 2y - 3 )( x - 2y + 3 )( x + 2y - 1 )( x + 2y + 1 )

( a + b )3 - ( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3 - a3 - b3

                                  = 3a2b + 3ab2

                                  = 3ab( a + b )

\(1,\)

\(\left(x^2-9y^2\right)\left(4x+12y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-4\left(x+3y\right)\)

\(=\left(x+3y\right)\left(x-3y-4\right)\)

\(3,\)

\(-x^2+2xy-y^2+25\)

\(=-\left(x^2-2xy+y^2\right)+25\)

\(=25-\left(x-y\right)^2\)

\(=5^2-\left(x-y\right)^2\)

\(=\left(5-x+y\right)\left(5+x-y\right)\)

1: \(=\left(3x-2y\right)^2-3\)

2: \(=x^2+4x+4-3=\left(x+2\right)^2-3\)

3: \(=x^2-4x+4+3=\left(x-2\right)^2+3\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6: \(=\dfrac{1}{4}x^2+x+1-1=\left(\dfrac{1}{2}x+1\right)^2-1\)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...