Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi `2h30p = 5/2(h)`
gọi quãng đg AB là `x (km)(x>0)`
t/g đi từ A->B là `x/50(h)`
t/g đi từ `B-> A` là `x/40`
Vì xe nghỉ ở B`15p=1/4h` và tỏng t/g là `5/2h` nên ta có pt
`x/50 +x/40 +1/4 =5/2`
`<=> x/50 +x/40 = 5/2 -1/4`
`<=> x(1/50 +1/40) =9/4`
`=> x = 9/4:(1/50+1/40)`
`=> x=50(t//m)`
Vậy AB dài 50km
3h40ph=11/3(h)
Gọi độ dài quãng đường AB là x km (x>0)
Thời gian đi: x/40 (giờ)
Thời gian về: x/30 (giờ)
Theo bài ra ta có phương trình:
x/40+x/30+1/6=11/3
⇔7x/120=7/2
⇒x=60
gọi AB là x
gọi TG đi là x/30
gọi TG về là x/40
ta có pt
x/30+x/40 = 31/6-12
x/30+x/40 = 14/3
4x+3x=560
7x=560
x=80 ( km )
vậy AB dài 80 km
Đổi: 3 giờ 40 phút = \(\dfrac{11}{3}\) giờ; 10 phút = \(\dfrac{1}{6}\) giờ
Gọi độ dài quãng đường AB là x (km)
(ĐK: x > 0)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{40}\) (giờ)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{30}\) (giờ)
Mà thời gian tổng cộng hết 11/3 giờ nên ta có pt:
\(\dfrac{x}{40}+\dfrac{1}{6}+\dfrac{x}{30}=\dfrac{11}{3}\\ \Leftrightarrow\dfrac{3x}{120}+\dfrac{20}{120}+\dfrac{4x}{120}=\dfrac{440}{120}\\ \Leftrightarrow3x+4x+20=440\\ \Leftrightarrow7x=420\\ \Leftrightarrow x=60\left(tmđk\right)\)
Vậy quãng đường AB dài 60km
Đổi \(3h40'=\dfrac{11}{3}h\)
\(10'=\dfrac{1}{6}h\)
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian xe máy đi từ A đến B là:
\(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B về A là:
\(\dfrac{x}{30}\left(h\right)\)
Theo đề, ta có: \(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{6}=\dfrac{11}{3}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{11}{3}-\dfrac{1}{6}=\dfrac{21}{6}\)
\(\Leftrightarrow\dfrac{7x}{120}=\dfrac{7}{2}\)
\(\Leftrightarrow7x=420\)
hay x=60(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 60km
Đổi \(15phút=\dfrac{1}{4}\left(h\right);2giờ30phút=\dfrac{5}{2}\left(h\right)\)
Gọi quãng đường AB là \(x\left(km;x>0\right)\)
Thì Thời gian người đó đi từ đến B là \(\dfrac{x}{50}\left(h\right)\)
Thời gian người đó quay về A là : \(\dfrac{x}{40}\left(h\right)\)
Vì đến B người đó nghỉ lại \(\dfrac{1}{4}h\) và thời gian tổng cộng là \(\dfrac{5}{2}h\) nên ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{50}+\dfrac{1}{4}=\dfrac{5}{2}\)
\(\Leftrightarrow5x+4x+50=500\)
\(\Leftrightarrow9x=450\)
\(\Leftrightarrow x=50\left(nhận\right)\)
Vậy độ dài quãng đường AB là \(50km\)
Gọi độ dài của quãng đường AB là \(x\left(km\right)\)
ĐK: \(x>0\)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{50}\left(h\right)\)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{40}\left(h\right)\)
Đổi \(15p=\dfrac{1}{4}h;2h30p=\dfrac{5}{2}h\)
Theo đề ta có phương trình:
\(\dfrac{x}{50}+\dfrac{x}{40}=\dfrac{5}{2}-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{x.4}{50.4}+\dfrac{x.5}{40.5}=\dfrac{5.100}{2.100}-\dfrac{1.50}{4.50}\)
\(\Leftrightarrow4x+5x=500-50\)
\(\Leftrightarrow9x=450\)
\(\Leftrightarrow x=50\left(tmđk\right)\)
Vậy quãng đường AB dài 50 km
Gọi độ dài AB là x
Thời gian đi là x/50
Thời gian về là x/40
=>x/50+x/40=2,25
=>x=50
Đổi 5h30'= 11/2 h
Gọi thời gian người đó đi từ A đến B là t (giờ) (t > 0)
=> Thời gian người đó đi từ B đến A : 11/2-1-t=9/2-t
Theo bài ra ta có:
30t= (9/2-t).24
<=> 30t=108-24t
<=> 54t=108 <=> t=2(h)
Độ dài quãng đường AB là
2.30=60(km)
Vậy ...
Đổi 5h30'= 11/2 h
Gọi thời gian người đó đi từ A đến B là t (giờ) (t > 0)
=> Thời gian người đó đi từ B đến A : 11/2-1-t=9/2-t
Theo bài ra ta có:
30t= (9/2-t).24
<=> 30t=108-24t
<=> 54t=108 <=> t=2(h)
Độ dài quãng đường AB là
2.30=60(km)
Vậy ...
Ẩn câu trả lời
15 phút = \(\dfrac{1}{4}\) giờ.
2 giờ 30 phút = \(\dfrac{5}{2}\) giờ.
Gọi quãng đường AB là x (km); x > 0.
\(\Rightarrow\) Thời gian xe đi từ A đến B là: \(\dfrac{x}{50}\) (h).
Thời gian xe đi từ B đến A là: \(\dfrac{x}{40}\) (h).
Vì khi đến B người đó nghỉ 15 phút rồi quay về A và thời gian tổng cộng cả đi lẫn về hết 2 giờ 30 phút nên ta có phương trình:
\(\dfrac{x}{50}+\dfrac{x}{40}+\dfrac{1}{4}=\dfrac{5}{2}.\\ \Leftrightarrow\dfrac{x}{50}+\dfrac{x}{40}-\dfrac{9}{4}=0.\\ \Rightarrow4x+5x-450=0.\\ \Leftrightarrow9x=450.\\ \Leftrightarrow x=50\left(TM\right).\)
15 phút = 0,25 giờ ; 2 giờ 30 phút = 2,5 giờ
Gọi x ( km ) là độ dài của quãng đường AB ( x > 0 )
Thời gian xe máy đó đi từ A đến B là: \(\dfrac{x}{50}\) ( giờ )
Thời gian xe máy đó đi từ B đến A là: \(\dfrac{x}{40}\) ( giờ )
Theo đề, tổng thời gian cả đi lẫn về của xe máy đó là 2,5 giờ nên ta có phương trình:
\(\dfrac{x}{50}+0,25+\dfrac{x}{40}=2,5\)
\(\Leftrightarrow\dfrac{4x}{200}+\dfrac{50}{200}+\dfrac{5x}{200}=\dfrac{500}{200}\)
\(\Leftrightarrow4x+50+6x=500\)
\(\Leftrightarrow4x+5x=500-50\)
\(\Leftrightarrow9x=450\)
\(\Leftrightarrow50\) ( nhận )
Vậy quãng đường AB dài 50 km
Câu 1 :
a.2x+11=0
⇔2x=-11
⇔x=\(\dfrac{-11}{2}\)
b. Ta có
(x-3)(x+2)=0
⇔x-3=0 hoặc x+2=0
⇔x=3 hoặc x=-2
Câu 2:
Đổi \(10'=\dfrac{1}{6}h\); \(3h40'=\dfrac{11}{3}h\)
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{40}\)(h)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{30}\left(h\right)\)
Theo đề, ta có: \(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{6}=\dfrac{11}{3}\)\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}+\dfrac{20}{120}=\dfrac{440}{120}\)
\(\Leftrightarrow7x+20=440\)
\(\Leftrightarrow7x=420\)
hay x=60(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 60km