Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABM và ΔACM, có:
AB = AC (gt)
BM = CM ( do AM là đường trung tuyến)
AM: cạnh chung
Nên: ΔABM = ΔACM (c - c - c)
=> góc AMB = góc AMC ( 2 góc t/ư)
Mà: góc AMB + góc AMC = 180o ( 2 góc kề bù)
Do đó: Góc AMB = góc AMC = 90o
Xét ΔBKM và ΔCKM, có:
BM = CM ( do AM là đường trung tuyến)
góc KMB = góc KMC = 90o ( Hay góc AMB = góc AMC)
KM: cạnh chung
Nên: ΔBKM = ΔCKM ( c - g - c)
=> góc KBM = góc KCM ( 2 góc t/ư)
Gọi CN giao AB tại N
Xét ΔBNC và ΔCHB, có:
góc NCB = góc HBC (hay góc KBM = góc KCM)
BC: cạnh chung
góc NBC = góc HCB (do ΔABC cân tại A)
Do đó: ΔBNC = ΔCHB ( g - c - g)
Nên: NB = HC ( 2 cạnh t/ư)
Lại có: AN + NB = AB (gt)
AH + HC = AC (gt)
Mà: NB = HC (cmt)
AB = AC ( do ΔABC cân tại A)
Do đó: AN = AH
Xét ΔABH = ΔACN, có:
AH = AN (cmt)
góc A: chung
AB = AC ( do ΔABC cân tại A)
Nên: ΔABH = ΔACN ( c - g - c)
=> góc AHB = góc ANC ( 2 góc t/ư)
Mà: góc AHB = 90o (gt)
=> góc ANC = góc AHB = 90o
Vậy CN ⊥ AB
Hay: CK ⊥ AB (đpcm)
Kẻ \(MI⊥AB,MJ⊥AC\)
Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))
Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)
Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)
Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)
Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)
Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.
c) Ta có: ΔHBM vuông tại H(gt)
nên \(\widehat{HBM}+\widehat{HMB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ABC}+\widehat{IMB}=90^0\)(3)
Ta có: ΔPBC vuông tại P(gt)
nên \(\widehat{PBC}+\widehat{PCB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{IBM}+\widehat{ACB}=90^0\)(4)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)(5)
Từ (3), (4) và (5) suy ra \(\widehat{IBM}=\widehat{IMB}\)
Xét ΔIBM có \(\widehat{IBM}=\widehat{IMB}\)(cmt)
nên ΔIBM cân tại I(Định lí đảo của tam giác cân)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(cmt)
BP là đường cao ứng với cạnh AC(gt)
AM cắt BP tại O(gt)
Do đó: O là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
Suy ra CO\(\perp\)AB
mà MH\(\perp\)AB(gt)
nên CO//MH(Định lí 1 từ vuông góc tới song song)
a) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
b) Xét ΔHBM vuông tại H và ΔKCM vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)
Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)
Suy ra: BH=CK(hai cạnh tương ứng)
Các đường phân giác BD và CE cắt nhau tại K nên AK la đường phân giác của góc A.
Trong một tam giác cân, đường phân giác xuất phát từ đỉnh đồng thời là đường trung tuyến, do đó AK đi qua trung điểm M của BC.
Các đường phân giác BD và CE cắt nhau tại K nên AK là đường phân giác của góc A .
Trong 1 tam giác cân , đường phân giác xuất phát từ đỉnh đồng thời là đường trunh tuyến , do đó AK đi qua trung điểm M của BC .
CM: Ta có: t/giác ABC cân tại A
AM là đường trung tuyến
=> AM cũng là đường cao (t/c t/giác cân)
Đường cao BH cắt đường cao AM tại K
=> K là trọng tâm của t/giác ABC
=> CK là đường cao thứ 3
=> CK \(\perp\)AB