Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đây là cấp số cộng có công sai là d=-4 vì -3-1=-7-(-3)=(-11)-(-7)=(-15)-(-11)=-4
b,c,e không là cấp số cộng
d: \(u_{n+1}-u_n=2\left(n+1\right)-5-2n+5=2n+2-2n=2\)
=>Đây là cấp số cộng có công sai là d=2
f: \(u_{n+1}-u_n=-3\left(n+1\right)+4+3n-4=-3n-3+3n=-3\)
=>Đây là cấp số cộng có công sai là d=-3
a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 = - 1 - 4n\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) = - 1 - 4n - 3 + 4n = - 4\)
Vậy dãy số là cấp số cộng có công sai \(d = - 4\).
b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)
Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).
c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)
Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.
d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} = - \frac{5}{3}\)
Vậy dãy số là cấp số cộng có công sai \(d = - \frac{5}{3}\).
\(u_n=\dfrac{1}{3^n}=\left(\dfrac{1}{3}\right)^n\\ \Rightarrow Câu.b.cấp.số.nhân\)
Câu a cũng là cấp số nhân với công bội q=2
a: \(\dfrac{u_{n+1}}{u_n}=\dfrac{3^{n+1}}{3^n}=3\)
=>\(u_{n+1}=3\cdot u_n\)
=>Đây là cấp số nhân có công bội là q=3
b: \(\dfrac{u_{n+1}}{u_n}=\dfrac{1}{2^{n+2}}:\dfrac{1}{2^{n+1}}=\dfrac{2^{n+1}}{2^{n+2}}=\dfrac{2^n\cdot2}{2^n\cdot4}=\dfrac{1}{2}\)
=>\(u_{n+1}=\dfrac{1}{2}\cdot u_n\)
=>Đây là cấp số nhân có công bội là q=1/2
\(u_1=1;u_2=4;u_3=9\)
Vì 1+9<>2*4
nên đây không là cấp số cộng
\(u1=2;u2=4;u3=8\)
Vì \(2\cdot u2< >u1+u3\)
nên đây không là cấp số cộng
Đáp án đúng là: D
Công thức số hạng tổng quát của cấp số cộng un = – 5 + (n – 1).4 = 4n – 9.
a) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd = - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = - 2\end{array} \right.\end{array}\)
b) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)
c) Dãy số đã cho không là cấp số cộng
Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)
Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*
\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)
\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)
\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)
\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)
\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)
=3/4
=>Chọn A
Các dãy là cấp số công là c;e;f
c: \(u2-u1=u3-u2=u4-u3=u5-u4=0\)
=>Đây là cấp số cộng có công sai là 0
e: \(u_{n+1}-u_n=1-4\left(n+1\right)-4+4n=-4n-4+4n=-4\)
=>Đây là cấp số cộng có công sai là d=-4
f: \(u_{n+1}-u_n\)
\(=-5\left(n+1\right)+2+5n-2\)
=-5n-5+5n
=-5
=>Đây là cấp số cộng có công sai là d=-5