Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy + x + 8y + 8
= x.(y + 1) + 8.(y + 1)
= (y + 1).(x + 8)
b) \(x^2-x-\frac{2}{3}.x+\frac{2}{3}\)
\(=x.\left(x-1\right)-\frac{2}{3}.\left(x-1\right)\)
\(=\left(x-1\right).\left(x-\frac{2}{3}\right)\)
c) x2 - 1
= x2 + x - x - 1
= x.(x + 1) - (x + 1)
= (x + 1).(x - 1)
a) (xy+x) +(8y+8)=x(y+1)+8(y+1)=(x+8)(y+1)
b) (x2-x) -(2/3x-2/3)=x(x-1)+2/3(x-1)=(x+2/3)(x-1)
c) x2-1= (x-1)(x+1)
6) a) Vì tích của 3 số âm là số âm nên trong đó chắc chắn chứa ít nhất 1 số âm
Bỏ số âm đó ra ngoài. Còn lại 99 số . Chia 99 số thành 33 nhóm. Mỗi nhóm gồn 3 số
=> kết quả mỗi nhóm là số âm
=> Tích của 99 số là tích của 33 số âm => kết quả là số âm
Nhân kết quả đó với số âm đã bỏ ra ngoài lúc đầu => ta được Tích của 100 số là số dương
a) xy + x + 8y + 8
= x ( y + 1 ) + 8 ( y + 1 )
= ( y + 1 ) . ( x + 8 )
b) x2 - 1
= x2 - x + x - 1
= x ( x - 1 ) + ( x - 1 )
= ( x - 1 ) . ( x + 1 )
a) Ta có \(\frac{x-2}{x+3}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x-2\right)\left(x+1\right)=\left(x-3\right)\left(x+3\right)\)
\(\Rightarrow x^2+x-2x-2=x^2-3^2\)
\(\Rightarrow x^2-x-2=x^2-3^2\)
\(\Rightarrow-x=2-3^2\)
\(\Rightarrow-x=-7\)
\(\Rightarrow x=7\)
b) Từ 5x = 8y = 20z
=> \(\hept{\begin{cases}5x=8y\\8y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{20}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{32}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{8}\end{cases}\Rightarrow}\frac{x}{32}=\frac{y}{20}=\frac{z}{8}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{32}=\frac{y}{20}=\frac{z}{8}=\frac{x-y-z}{32-20-8}=\frac{3}{4}\)
\(\Rightarrow x=\frac{32.3}{4}=24;\)
\(y=\frac{20.3}{4}=15;\)
\(z=\frac{8.3}{4}=6\)
Vậy x = 24 ; y = 15 ; z = 6
c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Rightarrow x=3k;y=4k\)
Khi đó xy = 48
<=> 3k.4k = 48
=> 12.k2 = 48
=> k2 = 4
=> k2 = 22
=> \(k=\pm2\)
Nếu k = - 2
=> \(\hept{\begin{cases}x=-6\\y=-8\end{cases}}\)
Nếu k = 2
=> \(\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Vậy các cặp số (x ; y) thỏa mãn là (- 6 ; - 8) ; (6 ; 8)
_bạn lên trang wed những hàng đẳng thức đáng nhớ 7 ấy nhé
_xem xong á́p dungj công thức đó vào bãi nãyy nhé
good night
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a)\(\frac{x-2}{x-3}=\frac{x+3}{x+5}\Rightarrow\left(x-2\right)\left(x+5\right)=\left(x-3\right)\left(x+3\right)\)
\(\Rightarrow x^2+3x-10=x^2-9\)
\(\Rightarrow x^2+3x-10-x^2+9=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\)
Vậy...
b)Theo bài ra ta có:
\(xy=96;2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow x=3k;y=2k\)
\(\Rightarrow xy=96\Leftrightarrow3k\cdot2k=96\)
\(\Leftrightarrow6k^2=96\)
\(\Leftrightarrow k^2=16\Leftrightarrow k=\pm4\)
Nếu k=4 thì \(\hept{\begin{cases}x=3k=3\cdot4=12\\y=2k=2\cdot4=8\end{cases}}\)
Nếu k=-4 thì \(\hept{\begin{cases}x=3k=3\cdot\left(-4\right)=-12\\y=2k=2\cdot\left(-4\right)=-8\end{cases}}\)
Vậy...
c)Theo bài ra ta có:
\(x-2y+z=34;5x=8y=3z\)\(\Leftrightarrow\frac{5x}{120}=\frac{8y}{120}=\frac{3z}{120}\Leftrightarrow\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\)
\(\Leftrightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}\)
Áp dụng tc dãy tỉ :
\(\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{24}=1\Rightarrow24\\\frac{2y}{30}=1\Rightarrow y=\frac{30}{2}=15\\\frac{z}{40}=1\Rightarrow z=40\end{cases}}\)
Vậy...
d)Theo bài ra ta có:
\(3x+5y+7z=123\);\(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\Leftrightarrow\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\)
\(\Leftrightarrow\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}\)
Áp dụng tc dãy tỉ:
\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{24}=1\Rightarrow x=\frac{24}{3}=8\\\frac{5y}{50}=1\Rightarrow y=\frac{50}{5}=10\\\frac{7z}{49}=1\Rightarrow z=\frac{49}{7}=7\end{cases}}\)
Vậy...
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)
=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)
=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)
=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)
a. xy+x+8y+8
= x(y+1)+8(y+1)
= (y+1)(x+8)
b. x2-x-2/3x+2/3
= x(x-1)-2/3(x-1)
= (x-1)(x-2/3)
c. x2-1
= x2-12
= (x+1)(x-1)