Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(n>2\), ta có \(I_n=\int\limits^{\dfrac{\pi}{2}}_0\sin^{n-1}x.\sin xdx\)
Lời giải:
\(\int ^{1}_{0}x^2dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}; \int ^{1}_{0}x^3dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^4}{4}=\frac{1}{4}\)
\(\frac{1}{3}>\frac{1}{4}\Rightarrow A\) đúng.
Câu B. Xét về mặt điều kiện thì với \(x>0\Rightarrow \frac{1}{x+1}\) luôn có nghĩa, lúc này hàm số mới có tích phân được.
Xét theo định nghĩa nguyên hàm thì luôn đúng vì \(F(x)=\int f(x)dx\Leftrightarrow f(x)=F'(x)\)
Câu D.
\(\int ^b_af(x)dx+\int ^c_bf(x)dx=F(b)-F(a)+F(c)-F(b)\)
\(=F(c)-F(a)=\int ^c_af(x)dx\)
Do đó D đúng.
Do đó câu C sai.
Nếu \(\int ^a_{-a}f(x)dx=2\int ^{a}_0f(x)dx\)
\(\Leftrightarrow F(a)-F(-a)=2F(a)-2F(0)\)
\(\Leftrightarrow F(a)+F(-a)=2F(0)\)
Giả sử cho \(F(x)=x^2\), \(a\neq 0\)thì điều trên hiển nhiên vô lý
Do đó C sai.
Câu 1:
\(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\int\limits^3_0\sqrt{x+1}dx\)
\(=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\frac{14}{3}=\frac{302}{15}\Rightarrow\int\limits^1_0f'\left(x\right)\sqrt{x+1}dx=\frac{232}{15}\)
Ta có:
\(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)
Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\frac{dx}{\sqrt{x+1}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2\sqrt{x+1}\end{matrix}\right.\)
\(\Rightarrow I=2f\left(x\right)\sqrt{x+1}|^3_0-2\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx\)
\(=4f\left(3\right)-2f\left(0\right)-2.\frac{232}{15}\)
\(=2\left(2f\left(3\right)-f\left(0\right)\right)-\frac{464}{15}=36-\frac{464}{15}=\frac{76}{15}\)
Câu 2:
\(I_1=\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\)
Đặt \(\left\{{}\begin{matrix}u=\frac{x}{x+1}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{\left(x+1\right)^2}dx\\v=f\left(x\right)\end{matrix}\right.\)
\(\Rightarrow I_1=\frac{xf\left(x\right)}{x+1}|^3_1-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}=\frac{3.3}{3+1}-\frac{1.3}{1+1}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=0\)
\(\Rightarrow\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}\)
Ta có:
\(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx=\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx+\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx=\frac{3}{4}+I_2\)
Xét \(I_2=\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx\Rightarrow\) đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\frac{1}{\left(x+1\right)^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=\frac{-1}{x+1}\end{matrix}\right.\)
\(\Rightarrow I_2=\frac{-lnx}{x+1}|^3_1+\int\limits^3_1\frac{dx}{x\left(x+1\right)}=-\frac{1}{4}ln3+\int\limits^1_0\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)
\(=-\frac{1}{4}ln3+ln\left(\frac{x}{x+1}\right)|^3_1=-\frac{1}{4}ln3+ln\frac{3}{4}-ln\frac{1}{2}=\frac{3}{4}ln3-ln2\)
\(\Rightarrow I=\frac{3}{4}+\frac{3}{4}ln3-ln2\)
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
Bạn xem lại xem có type thiếu đề không? \((x+\frac{\pi}{6})\) có sin hay cos, tan ở phía trước không?