Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Sau đây là keys
1/ \(A.T=2\pi\sqrt{\dfrac{m}{k}}\)
2/ \(D.\) Cộng hưởng cơ
3/ \(\varphi_1-\varphi_2=\pi+2k\pi=\left(2k+1\right)\pi\Rightarrow A.\left(2k+1\right)\pi\)
4/ \(\omega=2\pi f\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=\dfrac{1}{2}\left(Hz\right)\Rightarrow A.0,5Hz\)
5/ \(A.\) Cơ năng, biên độ, tần số
6/ Câu này vẽ đường tròn ra là xong thôi
\(\varphi=arc\cos\left(\dfrac{3}{6}\right)+\dfrac{\pi}{2}+arc\sin\left(\dfrac{3\sqrt{3}}{6}\right)=\dfrac{\pi}{3}+\dfrac{\pi}{2}+\dfrac{\pi}{3}=\dfrac{7\pi}{6}\left(rad\right)\)
\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{7\pi}{6.4\pi}=\dfrac{7}{24}\left(s\right)\Rightarrow A.\dfrac{7}{24}\left(s\right)\)
7/ \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}k\dfrac{4}{9}A^2\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{2}{9}kA^2}{\dfrac{1}{2}kA^2}=\dfrac{4}{9}\Leftrightarrow W_t=\dfrac{4}{9}W\left(J\right)\)
\(\Rightarrow W_d=W-W_t=W-\dfrac{4}{9}W=\dfrac{5}{9}W\left(J\right)\Rightarrow B.\dfrac{5}{9}W\left(J\right)\)
Câu này em nghĩ nên cho thêm đơn vị Jun ạ!
8/ \(T-mg\cos\alpha=m.a_{ht}=\dfrac{mv^2}{l}\)
\(\Leftrightarrow T=mg\cos\alpha+2mg\left(\cos\alpha-\cos\alpha_0\right)\)
\(\Leftrightarrow T=mg\left(3\cos\alpha-2\cos\alpha_0\right)\)
Lực căng cực đại khi vật ở vị trí thấp nhất
\(\Rightarrow\alpha=0\Rightarrow T_{max}=mg\left(3.1-2\cos60^0\right)=2mg\left(N\right)\)
Lực căng cực tiểu khi vật ở vị trí ban đầu
\(\Rightarrow\alpha=60^0\Rightarrow T_{min}=mg\left(3.\dfrac{1}{2}-2.\dfrac{1}{2}\right)=0,5mg\left(N\right)\)
\(\Rightarrow\dfrac{T_{max}}{T_{min}}=\dfrac{2}{0,5}=4\Rightarrow D.4\)
Đáp án đúng rõ ràng là D rồi, vì đây là sự khác biệt nhất khi so sánh dao động cưỡng bức với dao động duy trì.
Nhận xét riêng: Câu hỏi này là rất mơ hồ, cá nhân mình đánh giá thấp ý nghĩa của câu hỏi này.
1 phút thực hiện được 30 dao động toàn phần
\(\Rightarrow t=\frac{60}{30}=2s\)
\(t=8s=4T\)
Trong 1chu kì T, quãng đường vật đi được \(=4A\)
\(\Rightarrow\) Trong 4T, vật đi được \(4,4A=16A=64cm\)
\(\Rightarrow\) Biên độ \(A=64\) / \(16=4cm\)
Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên
\(Z_L-\frac{Z_C}{2,5}=R\)
Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì
\(Z_LZ_C=R^2+Z^2_L\)
\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)
Giải phương trình bậc 2 ta được
\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)
\(R=\frac{Z_L}{2}\)
Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền
Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)
\(\tan\alpha=\frac{R}{Z_L}=0,5\)
\(\sin\alpha=1\text{/}\sqrt{5}\)
\(U=U_C\sin\alpha=100V\)
\(U_o=U\sqrt{2}=100\sqrt{2}V\)
chọn C
Vì có điện trở thuần nên dao động trong mạch tắt dần do tỏa nhiệt ở điện trở. Để duy trì dao động điều hòa phải bổ sung cho mạch một năng lượng có công suất đủ bì vào phần năng lượng hao phí do tỏa nhiệt (hiệu ứng J un) trên điện trở, phần này có công suất là: \(\Delta P=I^2.R\)
Khi cùng cấp năng lượng đó, ta có: \(\frac{1}{2}CU^2_0=\frac{1}{2}LI^2_0\)
Mà: \(^{U=\frac{U_0}{\sqrt{2}}}_{I=I_{\frac{0}{\sqrt{2}}}}\)} \(\rightarrow I^2=\frac{C}{L}.U^2\)
\(P=I^2R=\frac{CR}{L}U^2=\frac{CRU^2_0}{2L}\)
\(\Rightarrow P=137\mu W\)
chọn B
Đáp án C
Dao động của một vật dưới tác dụng của một ngoại lực tuần hoàn gọi là dao động cưỡng bức.án C
Dao động của một vật dưới tác dụng của một ngoại lực tuần hoàn gọi là dao động cưỡng bức.