K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{b}{d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a-2b}{b}=\frac{c-2d}{d}\)

21 tháng 10 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=K\)

\(\Rightarrow a=Kb\)và \(c=Kd\)

\(\frac{a-2b}{b}=\frac{Kb-2b}{b}=\frac{b\left(K-2\right)}{b}=K-2\)

\(\frac{c-2d}{d}=\frac{Kd-2d}{d}=\frac{d\left(K-2\right)}{d}=K-2\)

Vậy\(\frac{a-2b}{b}=\frac{c-2d}{d}\)

22 tháng 9 2019

a)

i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!


22 tháng 9 2019

còn ii và phần b nữa

AH
Akai Haruma
Giáo viên
16 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

22 tháng 9 2019

a) 

i) theo đề ta có ad=bc

ta có a(c+d) = ac+ad

ta có (a+b)c = ac+bc

mà ad = bc

\(\frac{a}{a+b}=\frac{c}{c+d}\)

22 tháng 9 2019

các bạn ơi mình không hiểu sao câu ii mình ra thế này

 ii) đặt \(\frac{a}{b}=\frac{c}{d}=m\)\(\Rightarrow\)a=mb ; c=dm

Ta có \(\frac{a-b}{c-d}\)\(\frac{mb-b}{md-d}\)=\(\frac{b\left(m-1\right)}{d\left(m-1\right)}\)=\(\frac{b}{d}\)

Ta có \(\frac{a+c}{b+d}\)=\(\frac{mb+md}{b+d}\)=m

31 tháng 5 2015

từ \(\frac{a+b}{c+d}=\frac{a-2d}{c-2d}\)

=> \(\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

=> ac - 2ab + bc - 2bd = ac - 2bc + ad - 2bd

=>  -3ad = -3bc

=>  ad = bc 

=>   \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

1 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}\)

\(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)

tíc mình nhé! Thanks

1 tháng 9 2016

Đặt a/b=c/d=k=>a=kb;c=kd

Khi đó ta có:3a-2b/3a+2b=3kb-2b/3kb+2b=b(3k-2)/b(3k+2)=3k-2/3k+2 (1)

                  3c-2d/3c+2d=3kd-2d/3kd+2d=d(3k-2)/d(3k+2)=3k-2/3k+2 (2)

Từ (1) và (2) =>....

                             

1 tháng 11 2016

help thankssssssssssssssssssss

6 tháng 9 2019

Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79

Câu a)

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)

\(\Leftrightarrow\left(a+b\right).\left(c-2d\right)=\left(a-2b\right).\left(c+d\right)\)

\(\Leftrightarrow a.\left(c-2d\right)+b.\left(c-2d\right)=a.\left(c+d\right)-2b.\left(c+d\right)\)\(\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac+ad-2bc-2bd\)

\(\Leftrightarrow bc-2ad=ad-2bc\)

\(\Leftrightarrow bc+2bc=ad+2ad\)

\(\Leftrightarrow3bc=3ad\)

\(\Leftrightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Câu b)

Ta có : \(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\)

\(\Leftrightarrow a^2+2ad+d^2=b^2+2bc+c^2\) (*)

Lại có : \(a^2+d^2=b^2+c^2\)

\(\Leftrightarrow2ad=2bc\) ( bớt cả hai vế của đẳng thức (*) đi \(a^2+d^2\)\(b^2+c^2\))

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Vậy : 4 số a, b, c, d có thể lập được 1 tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).

25 tháng 3 2020

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html