Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ▲ABD và ▲ACD có:
\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))
AB=AC (▲ABC cân tại A).
AD là cạnh chung.
=>▲ABD = ▲ACD (c-g-c)
=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)
\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD⊥BC tại D (2)
- Từ (1) và (2) suy ra: AD là đường trung trực của BC.
b) Xét ▲AIF và ▲AIE có:
\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )
AF=AE (gt)
AI là cạnh chung.
=>▲AIF = ▲AIE (c-g-c)
=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)
Mà\(\widehat{AEI}=90^0\)(BE⊥AC tại E)
=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.
c) Xét ▲ABC có:
AD là đường cao (AD⊥BC tại I)
BE là đường cao (BE⊥AC tại E)
AD cắt BE tại I (gt)
=> I là trực tâm của ▲ABC.
=>CI⊥AB mà IF⊥AB (cmt)
=>CI trùng với IF hay C,I,F thẳng hàng.
a) Xét tgiac ABD và EBD có:
+ AB = BE
+ BD chung
+ góc ABD = EBD
=> Tgiac ABD = EBD (c-g-c)
=> đpcm
b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)
Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D
=> đpcm
c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE
=> góc HAE = AED (2 góc SLT do AH\(//\)DE)
Mà tgiac ADE cân tại D (cmt) => góc AED = DAE
=> góc HAE = DAE
=> AE là tia pgiac góc HAC (đpcm)
d) Xét tgiac ADK và EDC có:
+ góc DAK = DEC = 90o
+ góc ADK = EDC (2 góc đối đỉnh)
+ AD = DE (do tgiac ABD = EBD)
=> Tgiac ADK = EDC (g-c-g)
=> AK = EC và KD = DC (2 cạnh t/ứng)
=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2
Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2
Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD
Mà 2 góc này SLT => AE \(//\)KC
=> đpcm
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED