Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
skdksksqwertyuiopasdfghjklvbnm,.cvhjkrtyuertyuidfgthyujikoefghjkidfghjdfghjjfghjkfghjkfghjfghjkfghjdfghjkljhvcxzmnbvcxhgfdzghjkzlvhjckx
\(a,P=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(=(x^2-ax-bx+ac)\left(x-c\right)\)
\(=x^3-cx^2-ax^2+cax-bx^2+bcx+abx-abc\)
\(=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ca\right)-abc\)
\(=x^3-12x^2+47x-60\)
\(b,\) Ta có \(\left(x-4\right)^3=x^3-12x^2+48x-64\)
\(\Rightarrow P=\left(x-4\right)^3-\left(x+4\right)\)
Đặt \(t=x-4\)
\(\Rightarrow P=t^3-t\)
\(\Rightarrow P=t\left(t-1\right)\left(t+1\right)\)
\(\Rightarrow P=\left(x-4\right)\left(x-3\right)\left(x-5\right)\)
\(\left|x\right|=3\Rightarrow x=\orbr{\begin{cases}3\\-3\end{cases}}\)
Với \(x=3\Rightarrow P=0\)
Với \(x=-3\Rightarrow P=-336\)
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)
`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`
`= 3x^5 - 4x^2 - 7x + 2`
`b)`
`A(x)+B(x)`
`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)
`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`
`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`
`= -4x - 5`
`b)`
`A(x) - B(x)`
`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`
`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`
`= 6x^5 - 8x^2 - 10x + 9`
`c)`
Thay `x=-1` vào đa thức `A(x)`
` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`
`= 3*(-1) - 4*1 + 7 + 2`
`= -3 - 4 + 7 + 2`
`= -7+7 + 2`
`= 2`
Bạn xem lại đề ;-;.
`2,`
`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)
`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`
`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`
`= 6x^2 - x - 2 - (6x^2 - x - 1)`
`= 6x^2 - x - 2 - 6x^2 + x + 1`
`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`
`= -1`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
2:
M=6x^2+3x-4x-2-6x^2+3x-2x+1
=-1
1;
a: A(x)=3x^5-4x^2-7x+2
b: B(x)=-3x^5+4x^2+3x-7
B(x)+A(x)
=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7
=-4x-5
A(x)-B(x)
=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7
=-6x^5-8x^2-10x+9
a) Ta có : P = (x + 5)(ax2 + bx + 25)
= ax3 + bx2 + 25x + 5ax2 + 5bx + 125
= ax3 + (bx2 + 5ax2) + (25x + 5bx) + 125
= ax3 + x2(b + 5a) + x(25 + 5b) + 125
a) Ta có : P = (x + 5)(ax2 + bx + 25)
= ax3 + bx2 + 25x + 5ax2 + 5bx + 125
= ax3 + (bx2 + 5ax2) + (25x + 5bx) + 125
= ax3 + x2(b + 5a) + x(25 + 5b) + 125
b)\(P=ax^3+x^2\left(b+5a\right)+x\left(5b+25\right)+125\)
\(Q=x^3+125\). ĐỒng nhất 2 đa thức ta có:
\(\hept{\begin{cases}ax^3=x^3\\x^2\left(b+5a\right)+x\left(5b+25\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=1\\x^2\left(b+5a\right)+x\left(5b+25\right)=0\end{cases}}\)
\(\Rightarrow x^2\left(b+5\right)+5x\left(b+5\right)=0\)
\(\Rightarrow\left(x^2+5x\right)\left(b+5\right)=0\)
\(\Rightarrow b=-5\). Vậy...