Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
x^10 + x^5 + 1
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1)
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1)
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
-----------------------
Phương pháp:
Khi gặp bài toán phân tích thành nhân tử dạng x^(3m + 1) + x^(3n + 2) + 1 em thêm bớt các hạng tử từ bậc cao nhất trừ đi 1 đến x (bậc nhất) sao cho tổng số các hạng tử trong đa thức mới là một bội của 3. Sau đó nhóm ba hạng tử một sao cho trong mỗi nhóm có x² + x + 1
Dạng này khi phân tích luôn có kết quả là: (x² + x + 1).Q(x)
x^7 + x^2 + 1 = x^7 + x^6 - x^6 + x^5 - x^5 + x^4 - x^4 +x^3 - x^3 +2x^2 - x^2 +x - x +1
=(x^7 + x^6 + x^5) - (x^6 +x^5 +x^4) + (x^4 + x^3 +x^2) - (x^3 +x^2 + x) + (x^2 + x +1)
=x^5(x^2 + x + 1) - x^4(x^2 + x + 1) +x^2(x^2 + x + 1) - x(x^2 + x + 1) + (x^2 + x + 1)
=(x^2 + x + 1)(x^5 - x^4 +x^2 -x +1)
\(a,x^2+9x+20=x^2+4x+5x+20.\)
\(=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
\(b,x^4-5x^2+4=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
\(c,x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2-2\right)-\left(2x\right)^2=\left(x^2-2x-2\right)\left(x^2+2x-2\right)\)
\(d,x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1\)
\(\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x\right)+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Các phần về đa thức bạn có thể vào đây giải trực tuyến luôn bạn nhé.
http://ungdungtoan.com/
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)\(A=\left(x-1\right)\left(x^2-5x+6+x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-4x+4\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x-2\right)^2-\left(x-1\right)\)
\(A=\left(x-1\right)\left[\left(x-2\right)^2-1\right]\)
\(A=\left(x-3\right)\left(x-1\right)^2\)
link tham khảo
https://olm.vn/hoi-dap/detail/9212510579.html
hok tót
a) (x-2)(x+2)(x^2-10)-72=(x^2-4)(x^2-82)
b) x^8+x^6+x^4+x^2+1=x^2 (x^4+x^3+x^2+1+1/x^2)
c)(x+y)^4+x^4+y^4=(x+y)^4+(x+y)^4=2 (x+y)^4
a) (x-2)(x+2)(x^2 - 10) -72
= (x^2 - 4)(x^2 - 10) - 72
= x^4 - 4x^2 -10x^2 + 40 - 72
= x^4 - 14x^2 - 32
= x^4 - 16x^2 + 2x^2 - 32
= x^2(x^2 - 16) + 2(x^2 - 16)
= (x^2 - 16)(x^2 + 2)
= (x-4)(x+4)(x^2 + 2)
c) (x+y)4 + x4 + y4
= 2x4 + 4xy3 + 6x2y2 + 4x3y + 2y3
= 2(y4 + 2xy3 + 3x2y2 + 2x3y + x4)
= 2(y2 + xy + y2)2
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
A
A