Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(125^5:25^7\)
\(=\left(5^3\right)^5:\left(5^2\right)^7\)
\(=5^{15}:5^{14}\)
= 5
2) \(27^8:9^9\)
\(=\left(3^3\right)^8:\left(3^2\right)^9\)
\(=3^{24}:3^{18}\)
\(=3^6\)
3) \(36^5:6^8\)
\(=\left(6^2\right)^5:6^8\)
\(=6^{10}:6^8\)
\(=6^2\)
4) \(49^6:7^{10}\)
\(=\left(7^2\right)^6:7^{10}\)
\(=7^{12}:7^{10}=7^2\)
5) \(7^{20}:49^9\)
\(=7^{20}:\left(7^2\right)^9\)
\(=7^{20}:7^{18}=7^2\)
6) \(\frac{1}{2^{10}}:\frac{1}{8^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{\left(2^3\right)^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{2^9}=\frac{1}{2^{10}}.\frac{2^9}{1}=\frac{1}{2}\)
7) \(\left(-\frac{1}{2}\right)^{21}:\frac{1}{4^{10}}\)
\(=\frac{\left(-1\right)^{21}}{2^{21}}:\frac{1}{\left(2^2\right)^{10}}\)
\(=-\frac{1}{2^{21}}:\frac{1}{2^{20}}=-\frac{1}{2^{21}}.\frac{2^{20}}{1}\)
\(=-\frac{1}{2}\)
8) \(\frac{1}{16^5}:\left(-\frac{1}{2}\right)^{18}\)
\(=\frac{1}{\left(2^4\right)^5}:\frac{\left(-1\right)^{18}}{2^{18}}\)
\(=\frac{1}{2^{20}}:\frac{1}{2^{18}}\)
\(=\frac{1}{2^{20}}.\frac{2^{18}}{1}=\frac{1}{4}\)
9) \(\frac{1}{5^{30}}:\frac{1}{25^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{\left(5^2\right)^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{5^{28}}=\frac{1}{25}\)
a) Ta có: \(\left(x-\dfrac{3}{4}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{3}{4}=0\)
hay \(x=\dfrac{3}{4}\)
b) Ta có: \(\left(x+\dfrac{4}{9}\right)^2=\dfrac{49}{144}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{9}=\dfrac{7}{12}\\x+\dfrac{4}{9}=-\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{36}\\x=\dfrac{-37}{36}\end{matrix}\right.\)
a: =5*1,4-4*1,5+3*1,3
=7-6+3,9=4,9
b: =1/3*7+3/4*18-2/3*20
=7/3+54/4-40/3
=-11+54/4
=2,5
c: =5/6*17-1/2*16+2/5*15
=85/6-8+6
=85/6-2
=73/6
d: =15*4/5+12*3/4-18*4/9
=12+9-8
=12+1=13