Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có: \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
1/2D=1/2(1/6+1/10+......+1/45)
1/2D=1/12+1/20+1/30+.....+1/90
1/2D=1/3.4+1/4.5+1/5.6+......+1/9.10
1/2D=1/3-1/4+1/4-1/5+1/5-1/6+....+1/9-1/10
1/2D=1/3-1/10
1/2D=7/30
D=7/30:1/2
D=7/15
Ta có:\(D=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(=\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}\)
\(=2.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=2.\left(\frac{1}{3}-\frac{1}{10}\right)=2.\frac{7}{30}=\frac{7}{15}\)
Vậy \(D=\frac{7}{15}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{7.8}\)
=1-1/8
=7/8
D=1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8
=1-1/2+1/2-1/3+1/3-1/4+.........+1/7-1/8
=1-1/8=1/8