K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2024

b) Xét pt hoành độ giao điểm của hàm số đã cho và Ox là \(2x^3+2\left(6m-1\right)x^2-3\left(2m-1\right)x-3\left(1+2m\right)=0\)    (*)

Ta thấy \(x=1\) là nghiệm của pt trên. Lập sơ đồ Horner:

  \(2\) \(2\left(6m-1\right)\) \(-3\left(2m-1\right)\) \(-3\left(1+2m\right)\)
\(x=1\) \(2\) \(12m\) \(6m+3\) \(0\)

Do đó pt (*) 

\(\Leftrightarrow\left(x-1\right)\left(2x^2+12mx+6m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2+12mx+6m+3=0\end{matrix}\right.\)

 Xét pt \(2x^2+12mx+6m+3=0\)      (1)

 Ycbt \(\Leftrightarrow\) pt (1) có 2 nghiệm phân biệt \(x_1,x_2\) khác 1 và thỏa mãn \(x_1^2+x_2^2=27\)

 Có \(\Delta'=\left(6m\right)^2-2\left(6m+3\right)=36m^2-12m-6>0\) 

 \(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{1+\sqrt{7}}{6}\\m< \dfrac{1-\sqrt{7}}{6}\end{matrix}\right.\)

Có 2 nghiệm khác 1 \(\Leftrightarrow2.1^2+12m.1+6m+3\ne0\) 

\(\Leftrightarrow18m+5\ne0\)

\(\Leftrightarrow m\ne-\dfrac{5}{18}\)

Theo định lý Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-6m\\x_1x_2=\dfrac{6m+3}{2}\end{matrix}\right.\)

Để \(x_1^2+x_2^2=27\) 

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=27\)

\(\Leftrightarrow\left(-6m\right)^2-2.\dfrac{6m+3}{2}=27\)

\(\Leftrightarrow36m^2-6m-3=27\)

\(\Leftrightarrow6m^2-m-5=0\)

\(\Leftrightarrow6m^2-6m+5m-5=0\)

\(\Leftrightarrow6m\left(m-1\right)+5\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(6m+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(nhận\right)\\m=-\dfrac{5}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy \(m=1\) hoặc \(m=-\dfrac{5}{6}\) thỏa ycbt.

25 tháng 6 2024

c) Xét pt \(x^3-3mx^2+\left(3m-1\right)x+6m=0\)   (*)

Ta thấy (*) có nghiệm \(x=-1\). Lập sơ đồ Horner:

  \(1\) \(-3m\) \(3m-1\) \(6m\)
\(x=-1\) \(1\) \(-3m-1\) \(6m\) \(0\)

Vậy (*) \(\Leftrightarrow\left(x+1\right)\left(x^2-\left(3m+1\right)x+6m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2-\left(3m+1\right)x+6m=0\end{matrix}\right.\)

Tới đây thì làm tương tự câu b) nhé.

 

11 tháng 8 2016

(C) giao Ox tại 3 điểm <=> x^3-(2m+1)x^2-9x=0 có  3nghiệm pbiệt
<=> x( x^2- ( 2m+1)x-9)=0 có 3 nghiệm pbiệt
<=> x=0
x^2- ( 2m+1)x-9=0 (*)có 2 nghiệm pbiệt <=> denta >0
gọi x1, x2 là 2 nghiệm của (*)
3 nghiệm của đề là x1;0 ; x2
ta có x1+x2=0 dùng viet


 

23 tháng 8 2016

phuong trinh hoanh do giao diem la: x3-(2m+1)x2-9x=0.                                                                                                    <=> x[x2 -(2m+1)x-9] =0                                               ta giai dc x=o va x2-(2m+1)x-9=0                                                                                      ta dat g(x)=x2-(2m+1)x-9                                                                                               de cm cat truc hoanh tai 3 diem pb thi g(x)=o phai co 2 nghiem pb khac 0.           <=>Δ>0 =>m                                                                                                              goi x1, x2 la nghiem cua g(x)                                                                                     de lap thanh cap so cong thi x2=9x1                                                                             Ap dung vi-et  tim ra la dcvui           

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

11 tháng 10 2019

Mọi người làm giuap mình với ạ 😌

NV
11 tháng 10 2019

Nhìn câu vẽ đồ thị kia là tiêu rồi bạn

Bạn tự vẽ đồ thị, mấy câu sau mình làm thì được

23 tháng 9 2017

+ Phương trình hoành độ giao điểm của đồ thị C  và trục Ox:

x3- 3( m+ 1) x2+ 2( m 2+ 4m+1 )= 0

hay ( x- 2) ( x2-( 3m+ 1) x+ 2m2+ 2m) =0

 

Yêu cầu bài toán

 

Vậy ½< m và m≠ 1.

Chọn A.

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị với trục hoành là :

\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)

Biến đổi tương đương phương trình này :

\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)

      \(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)

Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :

\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)

Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)

\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)

 

1 tháng 8 2019
https://i.imgur.com/aNE9VUX.jpg