Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất
Do d cắt 2 trục, gọi pt d có dạng: \(y=ax+b\) (\(a\ne0\))
d đi qua M nên: \(4a+b=1\Rightarrow b=-4a+1\Rightarrow y=ax-4a+1\)
Hoành độ A là nghiệm: \(ax_A-4a+1=0\Rightarrow x_A=\dfrac{4a-1}{a}\)
Tung độ B là nghiệm: \(y_A=a.0-4a+1=-4a+1\)
Do A; B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{4a-1}{a}>0\\-4a+1>0\end{matrix}\right.\) \(\Rightarrow a< 0\)
Khi đó ta có: \(\left\{{}\begin{matrix}OA=x_A=\dfrac{4a-1}{a}\\OB=y_A=-4a+1\end{matrix}\right.\)
\(S=OA+OB=\dfrac{4a-1}{a}-4a+1=5+\left(-4a+\dfrac{1}{-a}\right)\ge5+2\sqrt{\dfrac{-4a}{-a}}=9\)
\(S_{min}=9\) khi \(-4a=\dfrac{1}{-a}\Leftrightarrow a=-\dfrac{1}{2}\)
Phương trình d: \(y=-\dfrac{1}{2}x+3\)
Do d qua M nên pt có dạng: \(y=kx-2k+4\)
Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)
Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)
Khi đó:
\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)
Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)
Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)
<=>Để AB nhỏ nhất thì tam giác OAB phải vuông cân tại O, tức là OA=OB. Gọi tọa độ A(a;0) và B(0;b)
Khi đó ta có |a|=|b|
<=> với b=a hoặc b=-a
TH1: b=a=>:x/a+y/a=1
<=>: x+y=a
Mà N(9;1)€AB nên 9+1=a
=> a=10
Pt đường thẳng cần tìm là x+y-10=0
TH2: b=-a
=>: x/a-y/a=1 Tương đương: x-y=a
Mà N(9;1) €AB nên 9-1=a
=> a=8
Pt đường thẳng cần tìm là x-y-8=0
Phương trình đường thẳng d có dạng:
\(y=kx-2k+1\)
Tọa độ A và B có dạng: \(A\left(\dfrac{2k-1}{k};0\right)\) ; \(B\left(0;-2k+1\right)\)
Để A, B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2k-1}{k}>0\\-2k+1>0\end{matrix}\right.\) \(\Rightarrow k< 0\)
Khi đó ta có: \(S_{OAB}=\dfrac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)
\(\Rightarrow\left(\dfrac{2k-1}{k}\right)\left(-2k+1\right)=8\)
\(\Leftrightarrow4k^2-4k+1=-8k\Leftrightarrow4k^2+4k+1=0\Rightarrow k=-\dfrac{1}{2}\)
Phương trình d: \(y=-\dfrac{1}{2}x+2\)
Lời giải:
Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:
$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$
$A\in Ox\Rightarrow y_A=0$
$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$
$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$
$B\in Oy\Rightarrow x_B=0$
$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$
$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$
Diện tích tam giác $ABC$:
$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$
Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$
Thay vào PTĐT $(d)$:
$4bx+by-(4b+4b)=0$
$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$
$\Rightarrow 4x+y-8=0$
Đây chính là PTĐT cần tìm.
Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với
Gọi `A(a;0) in Ox` và `B(0;b) in Oy`
`AB` nhỏ nhất `<=>M` là trung điểm `AB`
`=>{(x_M=[x_A+x_B]/2),(y_M=[y_A+y_B]/2):}`
`<=>{(27=a/2),(1=b/2):}`
`<=>{(a=54),(b=2):}`
`=>A(54;0) ; B(0;2)`
Có:`\vec{AB}=(-54;2) - ` là vtcp của `d`
`=>` Vtpt của `d` là: `\vec{n}=(1;27)`
Mà `B(0;2) in d`
`=>` Ptr `d` là: `1(x-0)+27(y-2)=0`
`<=>x+27y-54=0`