Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2-4x=0\)
\(2x\left(x-2\right)=0\)
TH1:2x=0⇒x=0
TH2:x-2=0⇒x=2
\(a,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow x-4=0\Leftrightarrow x=4\)
a) \(\Leftrightarrow x^2-x-x^2+2x=5\)
\(\Leftrightarrow x=5\)
b) \(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0
\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy x = 0 , x = 3 hoặc x = -3
\(a,\Leftrightarrow x^2-x-x^2+2x=5\\ \Leftrightarrow x=5\\ b,\Leftrightarrow4x\left(x^2-9\right)=0\\ \Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-3^2-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-81=0\\ \Leftrightarrow\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)=0\\ \Leftrightarrow\left(x-8\right)\left(x-1\right)\left(x^2-9x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=1\\\left(x-\dfrac{9}{2}\right)^2+\dfrac{23}{4}=0\left(vô.n_0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
\(\left(a+b\right)^2\left(a+b\right)=\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^2\left(a-b\right)=\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)
a, 9x4 + 6x2 + 1 = 0
\(\Leftrightarrow\) (3x2 + 1)2 = 0
\(\Leftrightarrow\) 3x2 + 1 = 0
\(\Leftrightarrow\) 3x2 = -1
\(\Leftrightarrow\) Ta có: 3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) Phương trình vô nghiệm
Vậy S = \(\varnothing\)
b, 2x4 + 5x2 + 2 = 0
\(\Leftrightarrow\) 2x4 + 4x2 + x2 + 2 = 0
\(\Leftrightarrow\) 2x2(x2 + 2) + (x2 + 2) = 0
\(\Leftrightarrow\) (x2 + 2)(2x2 + 1) = 0
Ta có: x2 \(\ge\) 0 và 2x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) Phương trình vô nghiệm
Vậy S = \(\varnothing\)
c, 2x4 - 20x + 18 = 0
\(\Leftrightarrow\) 2(x4 - 10x + 9) = 0
\(\Leftrightarrow\) x4 - 10x + 9 = 0
\(\Leftrightarrow\) (x - 1)\(\frac{x^4-10x+9}{x-1}\)
\(\Leftrightarrow\) (x - 1)(x3 + x2 + x - 9) = 0
Ta có: x3 + x2 + x - 9 > 0 với mọi x
\(\Rightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
Vậy S = {1}
d, (x2 + 5x)2 - 2(x2 + 5x) - 24 = 0
\(\Leftrightarrow\) x4 + 10x3 + 25x2 - 2x2 - 10x - 24 = 0
\(\Leftrightarrow\) x4 + 10x3 + 23x2 - 10x - 24 = 0
\(\Leftrightarrow\) (x + 1)\(\frac{x^4+10x^3+23x^2-10x-24}{x+1}\) = 0
\(\Leftrightarrow\) (x + 1)(x3 + 9x2 + 14x - 24) = 0
\(\Leftrightarrow\) (x + 1)(x - 1)\(\frac{x^3+9x^2+14x-24}{x-1}\) = 0
\(\Leftrightarrow\) (x + 1)(x - 1)(x2 + 10x + 24) = 0
\(\Leftrightarrow\) (x + 1)(x - 1)(x + 4)(x + 6) = 0
\(\Leftrightarrow\) x + 1 = 0 hoặc x - 1 = 0 hoặc x + 4 = 0 hoặc x + 6 = 0
\(\Leftrightarrow\) x = -1; x = 1; x = -4 và x = -6
Vậy S = {-1; 1; -4; -6}
Chúc bn học tốt!!
a) Ta có: \(9x^4+6x^2+1=0\)
\(\Leftrightarrow\left(3x^2\right)^2+2\cdot3x^2\cdot1+1^2=0\)
\(\Leftrightarrow\left(3x^2+1\right)^2=0\)
\(\Leftrightarrow3x^2+1=0\)
\(\Leftrightarrow3x^2=-1\)(vô lý)
Vậy: x∈∅
b) Ta có: \(2x^4+5x^2+2=0\)
\(\Leftrightarrow2x^4+4x^2+x^2+2=0\)
\(\Leftrightarrow2x^2\left(x^2+2\right)+\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(2x^2+1\right)=0\)(1)
Ta có: \(x^2+2\ge2>0\forall x\)(2)
Ta có: \(2x^2\ge0\forall x\)
⇒\(2x^2+1\ge1>0\forall x\)(3)
Từ (1), (2) và (3) suy ra x∈∅
Vậy: x∈∅
1: \(=\left(y-1\right)^2\)
2: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
3: =(1-2x)(1+2x)
\(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
5: \(=\left(x+3\right)^3\)
6: \(=\left(2x-y\right)^3\)
\(B=\dfrac{x^2-2x+1+x^2+2x+1-3x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x^2-3x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x-1}{x+1}\)