K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2021

Cho em hỏi là khi đăng câu này lên anh có sẵn lời giải không ạ?

Vì em từng gặp bài này rồi nhưng không giải được, sau đó em hỏi thầy thì thầy nói đây là bài toán sai, phương trình này không thể giải được.

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 3 2021

Đây là bài toán của các bạn gửi về hỏi em nhé, anh không có answer.

1 tháng 11 2021

anh gửi câu hỏi mà không ai trả lời luôn 

21 tháng 3 2021

498undefined

21 tháng 3 2021

C493
$\dfrac{a}{2b^3+1}=a.(1-\dfrac{2b^3}{2b^3+1})$

Áp dụng bđt Cauchy có: $b^3+b^3+1 \geq 3.\sqrt[]{b^3.b^3.1}=3b^2$

$⇒\dfrac{2b^3}{2b^3+1} \leq \dfrac{2b^3}{3b^2}=\dfrac{2b}{3}$

$⇒\dfrac{a}{2b^3+1} \geq a.(1-\dfrac{2b}{3})$

Tương tự ta có: $\dfrac{b}{2c^3+1} \geq b.(1-\dfrac{2c}{3})$

$\dfrac{c}{2a^3+1} \geq c.(1-\dfrac{2a}{3})$

Nên $B \geq a.(1-\dfrac{2b}{3})+b.(1-\dfrac{2c}{3})+c.(1-\dfrac{2a}{3})=a+b+c-\dfrac{2(ab+bc+ca)}{3}$

$ \geq \sqrt[]{3(ab+bc+ca)}-\dfrac{2.(ab+bc+ca)}{3}=1$

Dấu $=$ xảy ra $⇔a=b=c=1$

Vậy $MinB=1$ tại $a=b=c=1$

27 tháng 3 2021

C.544. Thiếu điều kiện a;b;c dương

\(a+b+c=3\Rightarrow ab+bc+ca\le3\)

\(\Rightarrow\sum\dfrac{ab}{\sqrt{c^2+3}}\le\sum\dfrac{ab}{\sqrt{c^2+ab+bc+ca}}=\sum\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{3}{2}\)

Ủa còn phần: \(\sum\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\) nó là C544 hay C545 vậy anh?

Nếu là C545 riêng thì đề bài sai, hai vế của BĐT không đồng bậc

28 tháng 3 2021

C545 bị sai đề nên mình sửa luôn, nếu không phải thì thôi...

\(\Sigma\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{1}{2}\Sigma\left(\dfrac{1}{a}\right)\) \(\forall a,b,c>0\)

 

Giải: 

Xét \(\dfrac{b^2c}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{a^3}{b^2c}\left(b+c\right)}=\dfrac{1}{\dfrac{a^3}{b}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}=\dfrac{\dfrac{1}{a^3}}{\dfrac{1}{b}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}\)

Đặt \(\left(x;y;z\right)\rightarrow\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\)

\(\dfrac{b^2c}{a^3\left(b+c\right)}=\dfrac{x^3}{y\left(y+z\right)}\)

Khi đó ta chỉ cần chứng minh \(\Sigma\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{1}{2}\left(x+y+z\right)\)

Áp dụng BĐT Cauchy: 

\(\dfrac{x^3}{y\left(y+z\right)}+\dfrac{y}{2}+\dfrac{y+z}{4}\ge3\sqrt[3]{\dfrac{x^3\cdot y\left(y+z\right)}{8y\left(y+z\right)}}=\dfrac{3x}{2}\)

\(\Leftrightarrow\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{3x}{2}-\dfrac{3y}{4}-\dfrac{z}{4}\)

\(\Rightarrow\Sigma\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{3}{2}\left(x+y+z\right)-\dfrac{3}{4}\left(x+y+z\right)-\dfrac{1}{4}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c>0\)

 

 

29 tháng 3 2021

\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\2mx-2y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx+x=2+2m\\x+2y=2\end{matrix}\right.\\ \left\{{}\begin{matrix}x\left(2m+1\right)=2\left(m+1\right)\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\\dfrac{2\left(m+1\right)}{2m+1}+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\2m+2+4my+2y=4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y\left(4m+2\right)=2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y=\dfrac{2m}{4m+2}\end{matrix}\right.\\ thay.....x,y....vào....ta.....được\\ \dfrac{2\left(m+1\right)}{2m+1}+\dfrac{2m}{4m+2}=1\\ \Leftrightarrow\dfrac{4\left(m+1\right)}{4m+2}+\dfrac{2m}{4m+2}=\dfrac{4m+2}{4m+2}\\ \Rightarrow4m+4+2m=4m+2\\ \Leftrightarrow2m=-2\\ \Leftrightarrow m=-1\\ vậy...m=-1...thì...tm\)                         \(thay....m=3...vào...ta...có...hpt:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\) 

 

 

 

 

 

 

 

\(thay...m=3....ta...có:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\\ vậy...với..m=3...thì...hệ....phương....trình....có...nghiệm...duy...nhất\left\{x=\dfrac{8}{7};y=\dfrac{3}{7}\right\}\)

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.