K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

Ai cóp py mạng mk bt ngay

7 tháng 12 2018

1/ \(3+3^2+3^3+...+3^{99}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{98}+3^{99}\right)\)

\(=1\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{97}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{97}\right)⋮12^{\left(đpcm\right)}\)

28 tháng 6 2016

b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

27 tháng 7 2016

1, B = 308/1 + 307/2 + 306/3 + ... + 3/306 + 2/307 + 1/308 
       = ( 307/2 + 1 ) + ( 306/3 + 1 ) + ... + ( 3/306 + 1 ) + ( 2/307 + 1 ) + ( 1/308 + 1 ) + 1 
       = 309/2 + 309/3 + ... + 309/306 + 309/307 + 309/308 + 1
       = 309 . ( 1/2 + 1/3 + ... + 1/306 + 1/307 + 1/308 + 1/309 )
       = 309 . A 
       => A/B = 1/309

5 tháng 4 2016

Bài 1

6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp

Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn

Bài 2

5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha

15 tháng 8 2016

Trong 3 số liên tiếp có 1 số chẵn mà 2 số còn lại là lẻ => Số ở giữa chẵn

Trong 3 số liên tiếp có 1 số chia hết cho 3 mà 2 số kia lại là số nguyên tố => số ở giữa chia hết cho 3 

=> số đó chia hết cho 6

27 tháng 2 2016

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM

26 tháng 12 2021

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)