K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

\(f(x)=2x+1\)

\(g(x)=x^3+\frac{1}{2}x^2+3x+\frac{3}{2}\)

\(=x^2(x+\frac{1}{2})+3(x+\frac{1}{2})\)

\(=(x^2+3)(x+\frac{1}{2})=\frac{1}{2}(x^2+3)(2x+1)\)

Do đó $f(x),g(x)$ có chung nhân tử \(2x+1\) nên có chung nghiệm \(x=-\frac{1}{2}\)

b: 1/2x-4=0

=>1/2x=4

hay x=8

a: x+7=0

=>x=-7

e: 4x2-81=0

=>(2x-9)(2x+9)=0

=>x=9/2 hoặc x=-9/2

g: x2-9x=0

=>x(x-9)=0

=>x=0 hoặc x=9

8 tháng 4 2022

a)\(x+7=0=>x=-7\)

b)\(\dfrac{1}{2}x-4=0=>\dfrac{1}{2}x=4=>x=8\)

c)\(-8x+20=0=>-8x=-20=>x=\dfrac{5}{2}\)

d)\(x^2-100=0=>x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

a: x+7=0

nên x=-7

b: x-4=0

nên x=4

c: -8x+20=0

=>-8x=-20

hay x=5/2

d: x2-100=0

=>(x-10)(x+10)=0

=>x=10 hoặc x=-10

8 tháng 4 2022

a) x +7 =0

=>x = -7

b) x - 4 =0=>x = 4

c) -8x + 20 = 0 =>-8x =-20 =>\(x=-\dfrac{20}{-8}=\dfrac{5}{2}\)

d)\(x^2-100=0=>x^2=100>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

23 tháng 7 2018

\(f\left(x\right)=2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

\(g\left(x\right)=x^3+\frac{1}{2}x^2+3x+\frac{3}{2}=0\)

\(\Leftrightarrow\)\(x^2\left(x+\frac{1}{2}\right)+3\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow\)\(x+\frac{1}{2}=0\)  (vì x2 + 3 > 0 )

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

Vậy nghiệm chung là:  \(x=-\frac{1}{2}\)

4 tháng 5 2017

Ôn tập toán 7

20 tháng 5 2021

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

20 tháng 5 2021

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

a: f(x)=x^3-2x^2+2x-5

g(x)=-x^3+3x^2-2x+4

b: Sửa đề: h(x)=f(x)+g(x)

h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1

c: h(x)=0

=>x^2-1=0

=>x=1 hoặc x=-1

a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)

\(=x^5+x^3-4x^2-2x+5\)

\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)

\(=x^5-x^4+2x^2-3x+1\)

b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)

\(=2x^5-x^4+x^3-2x^2-5x+6\)

17 tháng 10 2016

đến duc van