Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
Đây nè:
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
d/
Đặt \(sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\) \(\Rightarrow\left|t\right|\le\sqrt{2}\)
\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\frac{1-t^2}{2}\)
Pt trở thành:
\(6t-1=\frac{1-t^2}{2}\)
\(\Leftrightarrow t^2+12t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{39}-6\\t=-\sqrt{39}-6< -\sqrt{2}\left(l\right)\end{matrix}\right.\) (ủa giáo viên ra đề ngẫu nhiên à?)
\(\Rightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{39}-6}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\\x-\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
sin2x + 1 - 2sin2x + sinx + cosx = 0
⇔ sin2x + cos2x + sinx + cosx = 0
⇔ \(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(sin\left(2x+\dfrac{\pi}{4}\right)+sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(2sin\left(\dfrac{3x}{2}+\dfrac{\pi}{4}\right).cos\dfrac{x}{2}=0\)
⇔ \(\left[{}\begin{matrix}sin\left(3x+\dfrac{\pi}{4}\right)=0\\cos\dfrac{x}{2}=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k.\dfrac{\pi}{3}\\x=\pi+k.2\pi\end{matrix}\right.\) , k ∈ Z
Hướng dẫn giải
Chọn C.
TH1: Nếu cosx =0 có sin2x = 1 không thỏa mãn phương trình.
TH2: chia cả hai vế của phương trình cho cos2x ta được:
1.
\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(2\left(1-t^2\right)+3t=0\)
\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
2.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t=4\)
\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)