K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a. cos2x + cos4x + cos6x = 0

\(\Leftrightarrow\left(cos2x+cos6x\right)+cos4x=0\\ \Leftrightarrow2cos4x.cos2x+cos4x=0\\ \Leftrightarrow cos4x\left(2cos2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\left(k\in Z\right)}\)

NV
23 tháng 10 2021

1.

\(cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

30 tháng 8 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

f(x) = 1 ⇒ f′(x) = 0

6 tháng 9 2021

\(y=\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\)

\(\sin^6x+\cos^6x=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cdot\cos^2x+\cos^4x\right)\\ =\left(\sin^2x+\cos^2x\right)^2-3\sin^2x\cdot\cos^2x=1-\dfrac{3}{4}\sin^22x\)

Do \(0\le\sin^22x\le1\Leftrightarrow\dfrac{3}{4}\cdot0\ge-\dfrac{3}{4}\sin^22x\ge-\dfrac{3}{4}\)

\(\Leftrightarrow1\ge1-\dfrac{3}{4}\sin^22x\ge1-\dfrac{3}{4}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4}{3}\ge\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)\ge\dfrac{1}{4}\cdot\dfrac{4}{3}=\dfrac{1}{3}\)

Ta có \(-1\le\cos4x\le1\)

\(\Leftrightarrow\dfrac{1}{3}-1-1\le\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\le\dfrac{4}{3}+1-1\\ \Leftrightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)

Vậy \(y_{min}=-\dfrac{5}{3};y_{max}=\dfrac{4}{3}\)

 

NV
6 tháng 9 2021

\(y=\dfrac{4}{3}\left(sin^6x+cos^6x\right)+cos4x-1\)

\(y=\dfrac{4}{3}\left(\dfrac{5}{8}+\dfrac{3}{8}cos4x\right)+cos4x-1\)

\(y=\dfrac{3}{2}cos4x-\dfrac{1}{6}\)

\(-1\le cos4x\le1\Rightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)

\(y_{min}=-\dfrac{5}{3}\) khi \(cos4x=-1\)

\(y_{max}=\dfrac{4}{3}\) khi \(cos4x=1\)

1 tháng 6 2021

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

1 tháng 6 2021

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

NV
10 tháng 9 2021

ĐKXĐ: \(x\ne k\pi\)

\(sin7x=sin^2x+2sinx.cos2x+2sinx.cos4x+2sinx.cos6x\)

\(\Leftrightarrow sin7x=sin^2x+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(\Leftrightarrow sin7x=sin^2x-sinx+sin7x\)

\(\Leftrightarrow sinx\left(sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\sinx=1\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

22 tháng 10 2017

\(sinx+cosx\cdot sin2x+\sqrt{3}cos3x=2.\left(cos4x+sin^3x\right)\)

\(\Leftrightarrow sinx+cosx\cdot sin2x+\sqrt{3}cos3x=2cos4x+2sin^3x\)

\(\Leftrightarrow sinx-2sin^3x+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)

\(\Leftrightarrow sinx.\left(1-2sin^2x\right)+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)

\(\Leftrightarrow sinx.cos2x+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)

\(\Leftrightarrow sin.\left(x+2x\right)+\sqrt{3}cos3x=2cos4x\)

\(\Leftrightarrow sin3x+\sqrt{3}cos3x=2cos4x\)

\(\Leftrightarrow\dfrac{1}{2}sin3x+\dfrac{\sqrt{3}}{2}cos3x=cos4x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}.sin3x+sin\dfrac{\pi}{3}.cos3x=cos4x\)

\(\Leftrightarrow sin.\left(3x+\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{x}-4x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{2}-4x+k2\pi\\3x+\dfrac{\pi}{2}=\pi-\dfrac{\pi}{2}+4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{42}+\dfrac{k2\pi}{7}\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

NV
16 tháng 9 2020

\(\Leftrightarrow2cos4x.cos2x+cos4x=\frac{1}{2}cos2x\left(cos4x+cos2x\right)+2\)

\(\Leftrightarrow3cos4x.cos2x+2cos4x=cos^22x+4\)

\(\Leftrightarrow3cos2x\left(2cos^22x-1\right)+2\left(2cos^22x-1\right)=cos^22x+4\)

\(\Leftrightarrow2cos^22x+cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)