Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc âm thanh truyền trong môi trường không khí: 344 m/s
Vận tốc âm thanh truyền trong môi trường nước, chất lỏng: 1500m/s
Vận tốc âm thanh truyền trong môi trường chất rắn: 6100m/s
Vận tốc ánh sáng truyền trong môi trường chân không cao nhất( xấp xỉ 300 000 000), sau đó tùy vào môi trường nước, thủy tinh, kim cương sẽ giảm
Tốc độ của âm thanh khoảng 340m/s
Tốc độ của ánh sáng khoảng 3.108m/s
Đáp án D
Khi vật đi qua vị trí cân bằng thi biên độ dao động của vật sẽ tăng lên
Chọn D.
Khi thang máy bắt chuyển động nhanh dần đều con lắc có li độ cực đại thì không làm thay đổi li độ cực đại và tỉ số cơ năng dao động bằng tỉ số gia tốc hiệu dụng
Đáp án D.
Gọi v 0 , v 01 là vận tốc vật m, m 1 ngay khi trước va chạm; v, v 1 là vận tốc vật m, m 1 ngay khi sau va chạm.
– Vì va chạm đàn hồi nên áp dụng định luật bảo toàn động lượng và động năng, ta có:
– Biên độ dao động của vật m sau va chạm:
– Quãng đường mà vật m đi được từ lúc va chạm đến khi vật m đổi chiều chuyển động chính là quãng đường vật m đi được từ vị trí va chạm đến vị trí biên âm (hình vẽ):
Đáp án B
Thang máy chuyển động nhanh dần đều xuống dưới nên lực quán tính sẽ hướng lên làm giảm g.
Có
+ Xét con lắc lò xo : thay đổi g dẫn đến thay đổi VTCB. Độ lệch VTCB so với VTCB cũ là
đây chính là li độ của vật khi thang chuyển động. Lúc này vật có vận tốc
Biên độ mới:
+ Xét con lắc đơn : khi qua VTCB, con lắc đơn chỉ có động năng nên việc thay đổi g không làm ảnh hưởng đến cơ năng của con lắc.
Đáp án D
+ Vận tốc của hệ hai vật sau va chạm v = v m a x = m v 0 m + M = 200 . 3 200 + 200 = 1 , 5 m / s
Tần số góc của hệ dao động sau va chạm ω = k m + M = 40 0 , 2 + 0 , 2 = 10 r a d / s
Biên độ dao động sau va chạm A = v max ω = 1 , 5 10 = 15 c m
Image copyrightNasa
Tốc độ di chuyển nhanh kỷ lục của con người đã được xác lập từ 46 năm trước. Khi nào thì kỷ lục này sẽ bị vượt qua? Adam Hadhazy đặt câu hỏi.
Con người chúng ta luôn bị ám ảnh bởi tốc độ. Chẳng hạn như mấy tháng qua, đã có tin rằng các sinh viên ở Đức đã phá kỷ lục về xe điện tăng tốc nhanh nhất và rằng Không quân Hoa Kỳ có kế hoạch phát triển máy bay siêu thanh có khả năng bay nhanh gấp năm lần vận tốc âm thanh - Mach 5, tức là vượt tốc độ 6.100km/h.
Tốc độ không tưởngNhững chiếc phi cơ đó có thể không chở theo người, nhưng không phải bởi lý do là con người không thể di chuyển với tốc độ cao đến thế.
Trên thực tế, con người đã di chuyển nhanh gấp nhiều lần so với tốc độ Mach 5.
Tuy nhiên, liệu có giới hạn nào khiến con người không thể chịu đựng được không?
Kỷ lục về tốc độ hiện tại của con người hiện đang được đồng nắm giữ bởi ba nhà du hành không gian trên chuyến phi thuyền Apollo 10 của Nasa.
Trên đường trở về Trái Đất sau khi làm một chuyến bay vòng quanh Mặt Trăng vào năm 1969, phi thuyền của họ đã đạt vận tốc cao nhất, 39.897km/h.
“Tôi nghĩ rằng một trăm năm trước, có lẽ chúng ta không thể tưởng tượng rằng con người có thể du hành trong không gian với tốc độ gần 40.000km/h như thế,” Jim Bray từ tập đoàn không gian Lockheed Martin, nói.
Nhưng chẳng bao lâu nữa chúng ta sẽ phá vỡ kỷ lục này.
Bray là giám đốc dự án phi thuyền Orion làm cho Nasa, cơ quan không gian Hoa Kỳ.
Phi thuyền Orion dự định sẽ đưa các phi hành gia vào quỹ đạo thấp của Trái Đất và đó là cơ hội tốt để phá kỷ lục về tốc độ bay nhanh nhất của con người, vốn đã tồn tại từ 46 năm qua.
Image copyrightScience Photo Library
Image captionCác phi công được thử nghiệm trong môi trường ly tâm xem cơ thể họ có thể chịu đựng được tới bao nhiêu đơn vị lực G
Hỏa tiễn Space Launch System, một loại hỏa tiễn mới để đưa phi thuyền Orion vào không gian, sẽ là sứ vụ có người lái đầu tiên, dự kiến sẽ được thực hiện vào năm 2021 – bay gần đến một tiểu hành tinh nằm trong quỹ đạo của Mặt Trăng – với một chuyến đi kéo dài nhiều tháng đến sao Hỏa tiếp theo sau đó.
Hiện tại, các nhà thiết kế hình dung vận tốc tối đa của Orion nằm trong khoảng 32.000km/h. Tuy nhiên tốc độ của Apollo 10 có thể sẽ bị vượt qua thậm chí chỉ với những thiết kế cơ bản của chiếc Orion.
“Orion được thiết kế để đi đến nhiều điểm đến khác nhau trong vòng đời của nó,” Bray nói. “Tốc độ của nó có thể lên đến mức cao hơn nhiều so với những gì chúng ta dự định hiện nay.”
Ngay cả Orion cũng chưa phải là đỉnh điểm của tốc độ mà con người có khả năng đạt đến. “Không có giới hạn thực tế thật sự về tốc độ mà chúng ta có thể đi được ngoại trừ vận tốc ánh sáng,” Bray nói.
Ánh sáng xẹt qua với tốc độ khoảng một tỷ kilometre một giờ. Liệu chúng ta có thể hy vọng lấp được khoảng cách từ 40.000km/h đến vận tốc đó một cách an toàn?
Tốc độ không là vấn đề?Điều bất ngờ là tốc độ tự thân nó không phải là vấn đề gì đối với thể lực con người, miễn là nó được duy trì ở mức độ ổn định tương đối và di chuyển theo một hướng. Do đó, về mặt lý thuyết, con người có thể di chuyển ở tốc độ gần với giới hạn tốc độ của vũ trụ – tức là vận tốc ánh sáng.
Thế nhưng giả sử chúng ta có thể vượt qua những trở ngại kỹ thuật to lớn trong việc chế tạo ra những phi thuyền nhanh hơn thì cơ thể mong manh của chúng ta với cấu tạo đa phần là nước sẽ phải đối mặt với những nguy cơ mới do tình trạng siêu tốc độ tạo ra.
Những mối nguy hiểm có tính suy đoán cũng có thể xảy ra, nếu con người thực sự di chuyển với tốc độ nhanh hơn vận tốc ánh sáng.
Cho dù có đạt được tốc độ cao hơn 40.000km/h tới bao nhiêu đi chăng nữa, chúng ta vẫn đều phải tăng tốc (và cả giảm tốc) một cách từ từ.
Tăng tốc hay giảm tốc quá nhanh sẽ gây hậu quả khôn lường đối với các bộ phận bên trong cơ thể con người: hãy xem hậu quả đối với cơ thể con người trong các vụ tông xe khi chúng ta thay đổi vận tốc từ chỉ vài chục km/h thành đứng khựng một chỗ chỉ trong vòng có vài giây.
Nguyên nhân?
Đó là do ‘quán tính’ trong vũ trụ – tức là bất cứ vật thể có kích thước nào cũng kháng cự lại sự thay đổi trong tốc độ.
Khái niệm này được diễn tả trong định luật chuyển động thứ nhất của Newton: “Một vật thể đứng yên thì sẽ đứng yên và một vật thể di chuyển sẽ tiếp tục di chuyển với cùng vận tốc và cùng phương hướng trừ khi bị một lực bên ngoài tác động”.
“Đối với cơ thể con người, sự ổn định là tốt,” Bray giải thích. “Sự tăng tốc mới chính là điều khiến chúng ta phải quan ngại.”
Image copyrightNasa
Image captionPhi thuyền Orion phải có phần vỏ che dày tới 30cm ở một số chỗ để đối phó với nguy cơ bị những mảnh vụn trong không gian va phải
Lực GKhoảng một thế kỷ trước, sự phát minh ra những phi cơ bền vững, có khả năng xoay chuyển ở tốc độ cao đã khiến các phi công gặp phải những triệu chứng kỳ lạ có liên quan đến sự thay đổi vận tốc và phương hướng.
Trong số những triệu chứng này có tình trạng mất thị lực tạm thời và có cảm giác nặng nề hoặc phi trọng lượng.
Nguyên nhân gây ra tình trạng này chính là lực G, hay còn được gọi là lực hấp dẫn. Đó là đơn vị đo lực tăng tốc đối với vật thể có kích thước như cơ thể con người.
Lực G tác động theo chiều dọc, từ đỉnh đầu đến chân hay ngược lại.
Đây thực sự là điều không tốt đối với các phi công và hành khách. Máu sẽ tụ lại trong đầu những ai chịu tác động của lực G ngược – từ chân lên đầu.
Điều này sẽ tạo cảm giác bị tụ máu giống như khi chúng ta duy trì cơ thể ở tư thế trồng cây chuối. Mi mắt dưới sẽ bị tụ máu sưng lên phủ lấy đồng tử.
Ngược lại, khi sự tăng tốc theo chiều thuận từ đầu xuống chân thì mắt và não sẽ mất ô-xy do máu tụ lại ở điểm thấp của cơ thể. Thị giác sẽ bị mờ đi vào lúc đầu và sau đó sẽ là mất hoàn toàn thị lực – tức là tối đen hoàn toàn. Những tác động của lực G này sẽ khiến chúng ta trở nên bất tỉnh ngay lập tức.
Một người bình thường có thể chịu được năm đơn vị lực G từ đầu xuống chân trước khi rơi vào trạng thái bất tỉnh.
Các phi công mặc những trang phục đặc biệt chịu được lực G cao và được huấn luyện để giữ cho máu không bị dồn ra khỏi phần đầu vẫn có thể điều khiển máy bay ở khoảng chín đơn vị lực G.
“Trong những khoảng thời gian ngắn, cơ thể con người vẫn có thể chịu đựng mức cao hơn nhiều so với mức chín đơn vị lực G,” Jeff Sventek, giám đốc điều hành Hiệp hội Y khoa Hàng không có trụ sở ở Alexandria, tiểu bang Virginia, nói. “Nhưng để chịu được mức độ đó trong thời gian lâu thì không phải ai cũng làm được.”
Image copyrightUS Air Force
Image captionDi chuyển ở tốc độ Mach 5 là điều tuy thể lực con người có thể chịu được, nhưng có những rắc rối khác phát sinh
Nếu chỉ trong những khoảng khắc ngắn thì con người chúng ta có thể chịu được lực G cao hơn nhiều mà không gặp thương tổn nặng nề.
Kỷ lục chịu lực G chớp nhoáng thuộc về Eli Beeding, một đại úy Không lực Hoa Kỳ. Ông đã lái một chiếc phi thuyền được đẩy bằng hỏa tiễn đi giật lùi hồi năm 1958 và máy đo đã ghi nhận 82,6 đơn vị lực G trên ngực ông khi phi thuyền tăng tốc đến khoảng 55km/h trong khoảng 1 phần 10 giây. Ông chỉ bị những vết bầm ở lưng sau lần thử nghiệm về sức chịu đựng phi thường của con người.
Đá sỏi vũ trụCác phi hành gia, tùy vào loại phi thuyền mà họ lái, cũng đã trải qua những mức lực G rất cao – vào khoảng từ ba đến tám đơn vị G khi cất cánh và khi bay trở lại vào bầu khí quyển.
Những tác động lực G này đa phần không nguy hiểm và tác động từ trước ra sau nhờ vào một phương pháp thông minh là giữ chặt các phi hành gia vào ghế với mặt nhìn thẳng vào hướng đang di chuyển.
Một khi đã đạt tốc độ di chuyển ổn định khoảng 26.000 km/h trong quỹ đạo, các phi hành gia sẽ không còn có cảm giác về tốc độ cực nhanh nữa, mà sẽ chỉ cảm thấy sự di chuyển giống như những người đi trên máy bay chở khách mà thôi.
Tuy lực G không phải là vấn đề cho những chuyến du hành dài hơi của phi thuyền, nhưng đá sỏi vũ trụ thì có.
Những viên đá sỏi có kích thước cỡ như hạt gạo có thể đạt đến tốc độ tàn phá là gần 300.000km/h.
Để bảo vệ phi thuyền và phi hành đoàn, Orion có một lớp bảo vệ phía ngoài với độ dày từ 18 đến 30 cm tùy chỗ cùng với những lớp che và những thiết bị thông minh khác.
“Để chuyến bay quan trọng không bị thất bại, đối với toàn bộ phi thuyền chúng tôi phải xem xét xem đá vũ trụ có thể đến từ góc độ nào,” Bray nói.
Đá sỏi vũ trụ không phải là trở ngại duy nhất đối với các chuyến du hành không gian trong tương lai khi mà con người có thể có thể di chuyển với tốc độ cao hơn.
Trong một chuyến du hành đến sao Hỏa, các vấn đề thực tế khác cần phải được giải quyết, trong đó có nguồn cung thực phẩm cho các phi hành gia và nguy cơ cao mắc bệnh ung thư do phải đối mặt với phóng xạ vũ trụ. Tuy nhiên rút ngắn thời gian du hành có thể giảm nhẹ những nguy cơ này một cách đáng kể.
Cách mạng động cơ đẩyYêu cầu về tốc độ sẽ đặt ra những trở ngại mới. Những phi thuyền mới của Nasa vốn có khả năng phá kỷ lục của Apollo 10 vẫn sẽ phải dựa vào hệ thống hỏa tiễn đẩy vốn được sử dụng kể từ những chuyến du hành không gian đầu tiên.
Tuy nhiên, những hệ thống này lại có những hạn chế về tốc độ nghiêm trọng do những hạn chế về nguồn cung cấp năng lượng thấp.
Do đó, để đạt được tốc độ di chuyển nhanh hơn nhiều cho những chuyến du hành của con người đến sao Hỏa và những nơi xa hơn nữa, các nhà khoa học đã nhận ra rằng họ cần phải có cách tiếp cận mới. “Các công nghệ mà chúng ta có hiện nay đã đủ để đưa chúng ta đến đó,” Bray nói. “Nhưng chúng ta cần có một cuộc cách mạng về động cơ đẩy.”
Image copyrightNasa
Image captionĐội du hành gia tàu Apollo 10 có lẽ là những người đã di chuyển nhanh nhất trong lịch sử nhân loại - nhưng họ sẽ giữ kỷ lục được trong bao lâu nữa?
Eric Davis, một nhà vật lý tại Viện Nghiên cứu Cao cấp Austin và là cộng tác viên của Chương trình Đột phá động cơ đẩy của Nasa, một dự án nghiên cứu kéo dài sáu năm và kết thúc hồi năm 2002, nêu ra ba trong số những phương tiện hứa hẹn nhất để đưa con người đến tốc độ di chuyển hợp lý giữa các hành tinh.
Nói một cách vắn tắt thì đó là các phương pháp phân chia nguyên tử, hợp nhất nguyên tử, và triệt tiêu hiện tượng phản vật chất.
Phương pháp thứ nhất là sự phân chia nguyên tử ra như thực hiện ở các lò phản ứng hạt nhân thương mại. Phương pháp thứ hai là sự dung hợp – tức là kết hợp các nguyên tử lại thành những nguyên tử nặng hơn, vốn là phản ứng tạo nên sức mạnh của Mặt Trời và hiện vẫn là một công nghệ còn nằm ngoài tầm với.
“Đây là những công nghệ tân tiến,” Davis nói, “nhưng chúng thuộc về vật lý quy ước và đã được định hình kể từ ngày đầu của Kỷ nguyên Nguyên tử.”
Nếu nhìn nhận một cách lạc quan thì các hệ thống đẩy khác nhau dựa trên các khái niệm phân hạch và dung hợp về mặt lý thuyết có thể tăng tốc phi thuyền lên đạt đến mức 10% tốc độ ánh sáng, tức 100.000.000 km/h.
Nguyên lý phản vật chấtCách hay nhất để tạo động lực cho các phi thuyền siêu nhanh là áp dụng nguyên lý phản vật chất, dùng 'vật chất song trùng' để điều tiết vật chất.
Khi hai dạng vật chất này tiếp xúc với nhau thì chúng sẽ triệt tiêu lẫn nhau.
Ngày nay đã có những công nghệ tạo ra và tích trữ một lượng rất nhỏ thứ 'phản vật chất' - tức vật chất song trùng.
Việc sản xuất ra chất 'phản vật chất' ở mức độ có thể sử dụng được sẽ cần phải có các công nghệ đời mới hơn, và chúng ta sẽ còn vấp phải nhiều thách thức về mặt kỹ thuật trong vấn đề này. Tuy nhiên,David cho biết đã có nhiều ý tưởng hay đã được đề xuất.
Với động cơ được đẩy bằng chất 'phản vật chất', các phi thuyền có thể tăng tốc trong khoảng thời gian từ nhiều tháng đến nhiều năm cho đến khi nó đạt đến tỷ lệ rất cao của tốc độ ánh sáng và giữ cho lực G ở mức độ có thể chấp nhận được đối với các phi hành gia. Tuy nhiên, tốc độ mới này sẽ đặt ra những nguy cơ mới đối với cơ thể con người.
Ở tốc độ và trăm triệu km/h, mỗi hạt bụi trong không gian, từ phân tử hydrogen lạc ra cho đến sỏi vũ trụ, đều sẽ trở thành những viên đạn cực mạnh đập vào thân tàu.
Mặc dù có mật độ chỉ vào khoảng một phân tử trong một cm khối, lượng hydrogen bao quanh của vũ trụ sẽ trở thànhh một lượng bức xạ cực kỳ mạnh mẽ.
Các phân tử hydrogen sẽ tan ra thành những hạt nhỏ hơn phân tử có khả năng đi xuyên vào thân tàu và gây hại cho phi hành đoàn và thiết bị.
Ở tốc độ khoảng 95% vận tốc ánh sáng, tác hại này lên đến mức gần như có thể gây chết người ngay tức thì.
Nhiệt độ phi thuyền cũng sẽ tăng lên đến mức độ tan chảy của gần như tất cả mọi thứ, trong khi nước bên trong cơ thể các phi hành gia sẽ sôi ngay lập tức.
Marc Millis, một nhà vật lý học về động lực đẩy và từng là người đứng đầu Chương trình Đột phá Vật lý Động cơ đẩy của Nasa, lưu ý rằng giới hạn tốc độ di chuyển này của con người vẫn còn là một nỗi lo xa vời.
“Dựa trên những kiến thức vật lý chúng ta có được cho tới nay thì rất khó đạt được tốc độ vượt quá 10% vận tốc ánh sáng,” Millis nói. “Chúng ta vẫn chưa gặp mối nguy hiểm đó. Để so sánh, chúng ta không cần phải lo chết đuối nếu như chúng ta thậm chí còn chưa xuống nước.”