Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét các khoản \(\hept{\begin{cases}x< -3\\4>x\ge\\x\ge4\end{cases}-3}\)
Mỗi khoản sẽ có 1 phương trình sau khi giải so sánh với điều kiện tương ứng sẽ ra nghiệm cần tìm
\(\hept{\begin{cases}4-x=-x-3-2x\\x-4=x+3-2x\\x-4=x+3-2x\end{cases}}\)
2/3 x ( 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/70.73 - 2x = 1
2/3 x ( 1 - 1/4 + 1/4 - 1/7 + ... + 1/70 - 1/73 ) - 2x = 1
2/3 x ( 1- 1/73 ) - 2x = 1
2/3 x 72/73 - 2x = 1
48/73 - 2x = 1
2x = 48/73 - 1
2x = -25/73
x = -25/73 : 2
x = -25/146
Vậy x = -25/146
Tk nha !!
x+xy+x=4
<=>2x+xy=4
<=>x(y+2)=4
=>\(\hept{\begin{cases}x\inƯ\left(4\right)\\y+2\inƯ\left(4\right)\end{cases}}\)
Ta có bảng sau
x | 1 | 2 | 4 | -1 | -2 | -4 |
y+2 | 4 | 2 | 1 | -4 | -2 | -1 |
x | 1 | 2 | 4 | -1 | -2 | -4 |
y | 2 | 0 | -1 | -4 | -4 | -3 |
Vậy...
2, <=> \(\left|2x-6\right|+\left|2x+5\right|=11\)
<=> \(\left|6-2x\right|+\left|2x+5\right|=11\)
Ta có : \(\left|6-2x\right|+\left|2x+5\right|\ge\left|6-2x+2x-5\right|=\left|11\right|=11\)
Dấu = xảy ra khi : \(\left(6-2x\right)\left(2x+5\right)\ge0\)
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-\frac{5}{2}\le x\le3\).
Bài 1 :
\(a)\) Ta có :
\(2^{31}+8^{10}+16^8=2^{31}+2^{30}+2^{32}=2^{30}\left(2+1+4\right)=2^{30}.7\) chia hết cho 7
Vậy \(2^{31}+8^{10}+16^8⋮7\)
1/2.(1/3+1/6+1/10+...+1/x(x+1))=1/2.2016/2018
1/6+1/12+1/20+...+1/x(x+1)=504/1009
1/2.3+1/3.4+1/4.5+...+1/x(x+1)=504/1009
1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=504/1009
1/2-1/x+1=504/1009
x-1/2(x+1)=504/1009
-> 1009(x-1)=504.2(x+1)
1009x-1009=1008x+1008
1009x-1008x=1008+1009
->x=2017
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2016}{2018}\)
\(A=\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{x\left(x+1\right):2}\)
\(A=\frac{1}{2\left(2+1\right)}\cdot2+\frac{1}{3\left(3+1\right)}\cdot2+...+\frac{1}{x\left(x+1\right)}.2=\frac{2016}{2018}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{2018}\)
\(A=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2018}\)
\(A=1-\frac{1}{x+1}=\frac{2016}{2018}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2016}{2018}=\frac{1}{1009}\)
\(\Rightarrow x+1=1009\Rightarrow x=1008\)
8x=4x+6
\(\Leftrightarrow\left(2^3\right)^x=\left(2^2\right)^{x+6}\)
\(\Leftrightarrow2^{3x}=2^{2\left(x+6\right)}\)
\(\Leftrightarrow3x=2\left(x+6\right)\)
\(\Leftrightarrow3x=2x+12\)
\(\Leftrightarrow x=12\)
Ta có : 2x + 19 \(⋮\)x + 2
\(\Rightarrow\)2 . ( x + 2 ) + 15 \(⋮\)x + 2
\(\Rightarrow\)x + 2 \(\in\)Ư( 15 ) = { 1 ; 3 ; 5 ; 15 }
Ta lập bảng :
Vậy : x \(\in\){ 1 ; 3 ; 13 }
Ta có: (2x \(+\)19) \(⋮\)(x \(+\)2)
\(\Rightarrow\)(2x \(+\)4 \(+\)15 )\(⋮\)(x \(+\)2)
\(\Rightarrow\)(2 (x \(+\)2) \(+\)15) \(⋮\)(x \(+\)2)
Vì 2 (x \(+\)2) \(⋮\)(x \(+\)2)
\(\Rightarrow\)15 \(⋮\)x + 2
Mà x \(\in\)\(ℕ\)\(\Rightarrow\)x + 2 \(\ge\)2 ; x + 2\(\in\)\(ℕ^∗\)
\(\Rightarrow\)x + 2 \(\in\){3;5;15}
\(\Rightarrow\)