Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách làm của Lê Chí Cường đúng:
Tuy nhiên: (n500)2 có tận cùng là 0;1;4;5;6;9
=> ((n500)2)2 có thể tận cùng là: 0;1;5;6 không phải là 0;1;4;5;6
giả sử n2000+1 chia hết cho 10
=>n2000 có tận cùng =8
xét n=2k+1 =>n4 có tận cùng =1
=>(n4)500=n2000 có tận cùng =1 (trái giả thuyết)
xét n=2k =>n4 có tận cùng =6 hoặc 0
=>(n4)500=n2000 có tận cùng =6 hoặc 0(trái giả thuyết)
vậy không có n
có tồn tại hay ko số tự nhiên k ( k thuộc N* ) sao cho 2003^k-1 chia hết cho 51
giúp minh ddeeeee =((
Ta có 2003 là số lẻ suy ra 2003^k cũng sẽ là số lẻ mà 1 lại là số lẻ suy ra 2003^k-1 là số chẵn mà 51 là số chăn suy ra 2003^k-1 không chia hết cho 51 vậy ko tồn tại
mk chỉ làm câu b thôi
n^2 + n + 2
= n(n+1) + 2
giả sử n^2 + n +2 chia hết cho 5
=> n(n+1) chia hết cho5 ( vì 2 ko chia hết cho 5 )
mà n, n+1 là 2 số tự nhiên liên tiếp có thể có 1 số chia hết cho 5
Vd n= 4 và n+1 = 5
vậy vẫn tồn tại số tự nhiên n để n^2 + n + 2 chia hết cho 5
a) số 1 trên mũ hay ở dứoi
b) n^2+n=n(n+1) không có tận cùng là 3 hoặc 8 => n^2+n+2 không chia hết cho 5
c)
số chữ số 2^100=a
số chữ số 5^100=b
\(10^{a-1}<2^{100}<10^a\)
\(10^{b-1}<5^{100}<10^b\)
Nhân vế với vế
\(10^{a+b-2}<\left(2.5\right)^{100}<10^{a+b}\)
a+b-2<100<a+b
=> 100<a+b<102
a, b nguyên=> a+b=101
ds: 101
Giả sử có tồn tại một số n^2000 +1 chia hết cho 10
=> n^2000+1 chia hết cho 2 và 5
* do n^2000+1 chia hết cho 5 => n^2000 có tận cùng là 4 hoặc 9
TH1 n^2000 có tận cùng là 9
do 2000 chia hết cho 4 => n^2000 có cùng số tận cùng với n^4 => n^4 có tận cùng là 9 => n lẻ
nếu n có tận cùng là 1=> n^4 có tận cùng là 1 => loại
nếu n có tận cùng là 3 => n^4 có tận cùng là 1=> loại
nếu n có tận cùng là 5 => n^4 có tận cùng là 5 => loại
nếu n có tận cùng là 7 => n^4 có tận cùng là 1 => loại
nếu n có tận cùng là 9=> n^4 có tận cùng 1=> loại
vậy n ko tận cùng là 9
th2 ; n ^2000 có tận cùng là 4 => n ^2000 chẵn => n^2000+1 lẻ => n^2000 +1 ko chia hết cho 2 => loại
vậy giả sử sai . ko tồn tại số n^2000 + 1 chia hết cho 10
\(n^{2000}+1=\left(n^{1000}\right)^2+1\)
Vì các số bình phương có tận cùng bằng 0,1,9,6,5;4 mà tận cùng băng 9 thì (n^1000)^2 + 1 tận cùng 10 chia hết cho 10
Vậy có tồn tại ( l ike nha)