Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không thể, vì để có phân số mới bằng phân số a/b thì m=n và n khác 0
Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)
Ta có : \(a.\left(b+m\right)=a.b+a.m\)
\(b.\left(a+m\right)=a.b+b.m\)
mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)
\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn
\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
đến đây bn liệt kê ước của 3 r` lm tiếp!
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2 = 1
=> n = 3
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
a. Ta có
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)
Vì\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)
\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)
Cộng vế với vế của 1;2 ta được
\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)
hay A>B
\(\frac{a}{b}\)< 1 <=> a < b <=> a.m < b.m <=> ab + a.m < ab + b.m
<=> a(b + m) < b(a + m)
<=> \(\frac{a}{b}\)< \(\frac{a+m}{b+m}\)
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
có phân số a/b (a;b thuộc Z, b khác 0) và a/b = am/bn khi a = 0
VD :
0/b = 0.m/bn
\(\frac{a}{b}=\frac{a}{b}.\frac{m}{n}\Leftrightarrow\frac{a}{b}\left(1-\frac{m}{n}\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=0\\\frac{m}{n}=1\end{cases}}\)
Do \(m\ne n\Rightarrow\frac{m}{n}\ne1\Rightarrow\frac{a}{b}=0\Rightarrow a=0\)
Vậy a=0, b là số nguyên khác 0