Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tớ có 5 cách
Cách 1 là cm hai đường thẳng tạo ra cặp góc so le trong
Cách 2 là cm hai đường thẳng tạo ra cặp góc đồng vị
Cách 3 là cm hai đường thẳng cách đều nhau 1 khoảng nào đó
Cách 4 là cm hai đường thẳng cùng vuông góc với 1 dường thẳng nào đó
Cách 5 là cm hai đường thẳng cùng // với 1 đường thẳng khác
\(a,\)So le trong: \(E_1 và F_2;E_2 và F_1\)
Đồng vị: \(E_1 và F_4;E_2 và F_3;E_3 và F_2;E_4 và F_1\)
Trong cùng phía: \(E_1 và F_1;E_2 và F_2\)
\(b,\widehat{F_1}=\widehat{F_3}=120^0\left(đối.đỉnh\right)\\ \widehat{F_2}+\widehat{F_3}=180^0\left(kề.bù\right)\Rightarrow\widehat{F_2}=180^0-120^0=60^0\\ \widehat{F_2}=\widehat{F_4}-60^0\left(đối.đỉnh\right)\)
\(c,C_1:\widehat{F_2}=\widehat{E_3}\left(=60^0\right)\)
Mà 2 góc này ở vị trí đồng vị nên \(a//b\)
\(C_2:\)\(\widehat{E_1}=\widehat{E_3}=60^0\left(đối.đỉnh\right)\Rightarrow\widehat{E_1}=\widehat{F_2}\left(=60^0\right)\)
Mà 2 góc này ở vị trí so le trong nên \(a//b\)
a. Các cặp góc:
- So le trong là: \(\widehat{E_1}\) và \(\widehat{F_2};\widehat{E_2}\) và \(\widehat{F_1}\)
- Đồng vị là: \(\widehat{E_4},\widehat{F_1};\widehat{E_3},\widehat{F_2};\widehat{E_2},\widehat{F_3};\widehat{E_1},\widehat{F_4}\)
- Trong cùng phía là: \(\widehat{E_1},\widehat{F_1};\widehat{E_2},\widehat{F_2}\)
b. Ta có: \(\widehat{F_1}=\widehat{F_3}=120^o\) (đối đỉnh)
\(\widehat{F_2}=180^o-\widehat{F_1}=180^o-120^o=60^o\)
\(\widehat{F_3}=120^o\)
\(\widehat{F_4}=\widehat{F_2}=60^o\) (đối đỉnh)
c.
C1: Ta có: \(\widehat{E_1}=\widehat{E_3}=60^o\) (đối đỉnh)
Ta thấy: \(\widehat{E_1}=\widehat{F_2}=60^o\)
=> a//b (so le trong)
C2: Ta có: \(\widehat{E_2}=180^o-\widehat{E_3}=180^o-60^o=120^o\)
Ta thấy: \(\widehat{E_2}=\widehat{F_1}=120^o\)
=> a//b (so le trong)
14 phương pháp chứng minh 3 điểm thẳng hàng
1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. |
Thật ra, chứng minh thẳng hàng có hàng tá cách, nhưng mỗi bài toán chỉ có từ 2 - 3 cách giải (nếu theo như lượng kiến thức đang học). Vì vậy, mình chỉ liệt kê ra một, hai cái thôi nhé:
+ Theo tiên đề Ơclit, qua một điểm nằm ngoài đường thẳng chỉ kẻ được một và duy nhất một đường thẳng đi qua điểm đó và song song với đường thẳng đã cho. Nếu có thể kẻ được 2 đường thì 2 đường thẳng đó trùng nhau. Như vậy chúng thẳng hàng.
+ Chứng minh ba điểm thẳng hàng tạo thành hai góc kề bù.
+ Chứng minh vuông góc.
+ Ba điểm cùng nằm trên các đường trong tam giác.
Có 2 cách , : Cách 1 là xét xem chúng có cùng nằm trên 1 đươg thẳng ko ?
Cách 2 xét xem chúng có tao thành a đươg thẳng ko ?
D cách đều A,B,C => D là tâm đường tròn ngoại tiếp tam giác ABC
D là giao điểm của 2 đường trung trực của 2 trong 3 đoạn thẳng AB, AC, BC
cách 1 : chứng minh góc ABC = 180 độ
cách 2: chứng minh 2 tia trùng nhau thì 3 điểm đó thẳng hàng