Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu sửa đề :
có hai bình cách nhiệt đủ lớn cùng đựng 1 lượng nước ,ở bình 1 nhiệt độ t1, bình 2 t2.Lúc đầu người ta rót 1 nửa lượng nước từ bình 1 sang bình 2. Khi thấy cân bằng nhiệt thì thấy nhiệt độ nước trong bình 2 tăng gấp đôi nhiệt độ ban đầu. Sau đó người ta lại rót 1 nửa lượng nước đang có từ bình 2 sang bình 1. Nhiệt độ trong bình 1 sau khi đã CBN là 30oC (bỏ qua sự trao đổi nhiệt giữa mtrường)
a) Tính t1,t2
b) Nếu rót hết phần nước còn lại từ bình 2 sang bình 1 thì nhiệt đọ bình 1 khi đã cân bằng nhiệt là bao nhiêu ?
Lời giải :
Nguồn : https://h.o.c.24.vn/cau-hoi/co-hai-binh-cach-nhiet-du-lon-dung-cung-mot-luong-nuoc-binh-1-o-nhiet-do-t1-va-binh-2-o-nhiet-do-t2-luc-dau-nguoi-ta-rot-mot-nua-luong-nuoc-trong.260789230992
nếu không xem đc hình thì vào tkhđ
j dzay olm lag a , vô link cung dc
Có hai bình cách nhiệt đủ lớn, đựng cùng một lượng nước, bình 1 ở nhiệt độ t1 và bình 2 ở nhiệt độ t2. Lúc đầu người ta... - H.o.c24
Gọi khối lượng nước rót sang là m ; nhiệt độ cân bằng lần 1 là t3 , lần 2 là t4 (0 < m < 4 ; t4 > t3)
Rót m lượng nước từ 1 sang 2 => lượng nước m tỏa nhiệt hạ từ 68oC đến t3oC ; 5 kg nước bình 2 thu nhiệt tăng
từ 20oC lên toC
Phương trình cân bằng nhiệt :
m.c.(68-t3) = 5.c.(t3 - 20)
=> m.(68-t3) = 5.(t3 - 20)
=> 68m - mt3 = 5t3 - 100 (1)
Rót m lượng nước từ bình 2 sang bình 1 sau khi cân bằng nhệt, lượng nước m thu nhiệt tăng từ t3 oC lên t4 oC ; lượng nước
còn lại trong bình 1 tỏa nhiệt hạ từ 68oC xuống t4oC
Phương trình cân bằng nhiệt
m.c.(t4 - t3) = (4 - m).c(68 - t4)
=> m.(t4 - t3) = (4 - m)(68 - t4)
=> -mt3 = 272 - 4t4 - 68m
=> 68m - mt3 = 272 - 4t4 (2)
Từ (1)(2) => 272 - 4t4 = 5t3 - 100
<=> 372 - 4(t4 - t3) = 9t3
<=> t3 > 34,2 (Vì t4 - t3 < 16)
Khi đó 5(t3 - 20) > 71
=> m(68 - t3) > 71
=> m > 2,1
Vậy 2,1 < m < 4
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
\(t=\frac{m_2t_2\left(t'-t_1\right)}{m_2}\) (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
\(m=\frac{m_1m_2\left(t'-t_1\right)}{m_2\left(t_2-t_1\right)-m_1\left(t'-t_1\right)}\) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
\(T_2=\frac{m_1t'+m_2t}{m+m_2}=58,12^0C\)
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
\(T_1=\frac{mT_2+\left(m_1-m\right)t'}{m_1}=23,76^oC\)
Gọi \(m\) là khối lượng nước rót cần tìm
Lần thứ nhất :\(m.c.\left(t-t_1\right)=m_2.c.\left(t_2-t\right)\)\(\Rightarrow m\left(t-20\right)=4.\left(60-t\right)\)\(\Rightarrow m=\frac{4.\left(60-t\right)}{t-20}\left(1\right)\)
Lần thứ hai :
\(m.c\left(t-t'\right)=\left(m_1-m\right).c\left(t'-t_1\right)\)
\(\Rightarrow m.\left(t-21,5\right)=\left(2-m\right).\left(21,5-20\right)\)
\(\Rightarrow m\left(t-21,5\right)=\left(2-m\right).1,5\left(2\right)\)
Thay thế (1) vào (2) :
Ta được : \(t=59,25^0C\left(3\right)\)
Thay thế (3) vào (1) ta được:
\(m=0,076\left(kg\right)\)
m₁ = 2kg
t₁ = 20ºC
m₂ = 4kg
t₂ = 60ºC
t₁' = 21,5ºC
gọi c là nhiệt dung riêng của nước
khi rót lần thứ nhất thì m(kg) nước ở t₁ = 20ºC thu nhiệt, nước bình 2 tỏa nhiệt
nhiệt độ cân bằng là t₂' (ºC) với 20 < t₂' < 60
ta có Phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(t₂'-t₁) = cm₂(t₂-t₂')
m(t₂'-20) = 4(60-t₂') (1)
khi rót lần thứ 2 về bình 1 một lượng nước là m (kg) nước thì m (kg) nước ở t₂' > 20ºC = t₁ nên m(kg) nước tỏa nhiệt, nước trong bình m₁ thu nhiệt, nhiệt độ cân bằng là t₁' = 21,5ºC
* lượng nước trong bình m₁ bây h là m₁ - m
ta có phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm₁(t₁'-t₁) = cm(t₂'-t₁')
(2-m)(21,5 - 20) = m(t₂' - 21,5)
(2-m)1,5 = m(t₂' - 21,5)
m(t₂' - 21,5) = 1,5(2-m)
mt₂' - 21,5m = 3 - 1,5m
mt₂' - 20m = 3
m(t₂'-20) = 3 (2)
từ (1) và (2) ta có hệ:
[ m(t₂'-20) = 4(60-t₂')
[ m(t₂'-20) = 3 (2)
ta đc:
4(60-t₂') = 3
240 - 4t₂' = 3
=> 4t₂ = 237
=> t₂ = 59,25 (ºC)
=> m = 3/(t₂' - 20) = 3/(59,25 - 20)
m ~ 0,07 (kg) = 70 g
lần rót thứ 2: rót m = 0,07 kg từ bình 1 sang bình 2
bình 2 đang có 2kg nước ở t₂' = 59,25ºC
m (kg) nước ở t₁' = 21,5ºC
vậy nước bình 2 tỏa nhiệt, m kg nước thu nhiệt
nhiệt độ cân bằng là T ºC vs 21,5 < T < 59,25
phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(T-t₁') = cm₂(t₂'-T)
0,07.(T - 21,5) = 4(59,25-T)
0,07T - 1,505 = 237 - 4T
4,007T = 238,505
=> T = 59,5 (ºC)
Đáp án : B
- Giả sử khi rót lượng nước m (kg) từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.c.(t - t 1 ) = m 2 .c.( t 2 - t)
⇒ m.(t - t 1 ) = m 2 .( t 2 - t) (1)
- Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t ' = 21,95°C và lượng nước trong bình 1 lúc này chỉ còn ( m 1 - m) nên ta có phương trình cân bằng:
m.c(t - t ' ) = ( m 1 - m).c( t ' - t 1 )
⇒ m.(t - t ' ) = ( m 1 - m).( t ' - t 1 )
⇒ m.(t – t ' ) = m 1 .( t ' – t1) – m.( t ' – t 1 )
⇒ m.(t – t ' ) + m.( t ' – t1) = m 1 ( t ' – t 1 )
⇒ m.(t – t 1 ) = m 1 .( t ' – t 1 ) (2)
- Từ (1) và (2) ta có pt sau:
m 2 .( t 2 - t) = m 1 .( t ' - t 1 )
⇒ 4.(60 – t) = 2.(21,95 – 20)
⇒ t = 59,025°C
- Thay vào (2) ta được
m.(59,025 – 20) = 2.(21,95 – 20)
⇒ m = 0,1 (kg)
m1 = 4kg
m2 = 1kg
a) Gọi m là khối lượng nước rót từ bình 1 sang bình 2 và ngược lại.
+ Quá trình rót nước từ 1 sang 2, nhiệt độ cân bằng bình 2 là t1: \(Q_{tỏa}=Q_{thu}\)
\(\Rightarrow m.c(50-t_1)=1.c(t_1-30)\) (1)
+ Quá trình rót nước từ 2 trở về 1, nhiệt độ cân bằng là \(48^0C\), phương trình cân bằng nhiệt:
\(m.c(48-t_1)=(4-m).c.(50-48)\Rightarrow m.c(50-t_1)=8c\) (2)
Từ (1) và (2) suy ra: \(c(t_1-30)=8c\Rightarrow t_1=38^0C\)
b) Từ (1) ta có: \(m.c(50-38)=c(38-30)\Rightarrow m=\dfrac{2}{3}(kg)\)
- Gọi lượng nước rót mỗi lần là x ( lít); nhiệt độ cân bằng nhiệt ở bình B là t0(0C); nhiệt dung riêng của nước là c( J/kg.độ); với nước thì 1lít= 1kg
- Lần rót 1: Từ bình A sang bình B ta có phương trình cân bằng nhiệt ở bình B:
x.c.(60 – t0) = 1.c.(t0 – 20)
↔ x.(60 – t0) = (t0 – 20)
↔ x = \(\frac{t_0-20}{60-t_0}\) (1)
- Lần rót 2: Từ bình B sang bình A ta có phương trình cân bằng nhiệt ở bình A:
(5-x).c(60-59) = x.c.(59- t0)
↔ 5-x = x.(59- t0) (2)
- Từ (1;2) ta có: 5- \(\frac{1_0-20}{60-t_0}\)= \(\frac{t_0-20}{60-t_0}\).(59- t0)
↔5.(60-t0)- t0 + 20 = (t0- 20).(59-t0)
↔300- 5t0 –t0 +20 = 59.t0- t02 – 1180 +20.t0
↔t02 – 85.t0 + 1500 = 0.
Giải ra được t0 = 25 (0C) thay vào (1) được x = 1/7( lít)
gọi:
t là nhiệt độ cân bằng sau khi rót từ bình 1 sang 2
t' là nhiệt độ cân bằng sau khi rót từ bình 2 sang 1
m là khối lượng nước rót
ta có:
rót lần đầu từ bình 1 sang bình 2 thì phương trình cân bằng nhiệt là:
Qtỏa=Qthu
\(\Leftrightarrow mC\left(t_1-t\right)=m_2C\left(t-t_2\right)\)
\(\Leftrightarrow m\left(40-t\right)=2\left(t-20\right)\)
\(\Leftrightarrow40m-mt=2t-40\)
\(\Leftrightarrow2t+mt=40m+40\)
\(\Leftrightarrow t=\frac{40\left(m+1\right)}{2+m}\left(1\right)\)
rót tiếp tục từ bình 2 sang bình 1 thì phương trình cân bằng nhiệt là:
Qtỏa=Qthu
\(\Leftrightarrow\left(m_1-m\right)C\left(t_1-t'\right)=mC\left(t'-t\right)\)
\(\Leftrightarrow\left(4-m\right)\left(40-36\right)=m\left(36-t\right)\)
thế (1) vào phương trình trên ta có:
\(4\left(4-m\right)=m\left(36-\frac{40\left(m+1\right)}{m+2}\right)\)
\(\Leftrightarrow4\left(4-m\right)=m\left(\frac{36\left(m+2\right)-40\left(m+1\right)}{m+2}\right)\)
\(\Leftrightarrow4\left(4-m\right)=m\left(\frac{36m+72-40m-40}{m+2}\right)\)
\(\Leftrightarrow4\left(4-m\right)=\frac{m\left(-4m+32\right)}{m+2}\)
\(\Leftrightarrow\left(16-4m\right)\left(m+2\right)=-4m^2+32m\)
\(\Leftrightarrow16m+32-4m^2-8m+4m^2-32m=0\)
\(\Leftrightarrow-24m+32=0\Rightarrow m=\frac{4}{3}kg\)
a) Sau lần rót thứ nhất:
\(\frac{m}{2}c\left(t_1-2t_2\right)=mc.\left(2t_2-t_2\right)\Rightarrow t_1=4t_2\)(1)
Sau lần rót thứ hai:
\(\frac{m}{2}c\left(t_1-30\right)=\frac{3m}{4}c\left(30-2t_2\right)\Rightarrow2\left(t_1-30\right)=3\left(20-2t_2\right)\)(2)
Giải PT (1) và (2) ⇒ t1 = \(\frac{600}{14}=42,86^0C\); t2 = \(\frac{150}{14}=10,71^0C\)
b) Về mặt trao đổi nhiệt, 3 lần rót trên tương đương với việc rót 1 lần toàn bộ nước vào bình 2 sang bình 1, gọi t là nhiệt độ cân bằng:
\(mc\left(t_1-t\right)=mc\left(t-t_2\right)\)
⇒ t=\(\frac{t_1+t_2}{2}=\frac{750}{28}=26,78^0C\)
3m/4 là đâu ra ạ