Có các nhận xét sau về kim loại và hợp chất của nó:

1;...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2015

Ta có :  λo = 2300Ǻ = 2,3.10-7 (m).  h= 6,625.10-34 (J.s),  c = 3.108 m/s.
            Emax=1,5( eV) = 1,5.1,6.10-19= 2,4.10-19(J)

Mặt khác: Theo định luật bảo toàn năng lượng và hiện tượng quang điện ta có công thức
                  (h.c)/  λ = (h.c)/ λ
o  + Emax suy ra:  λ=((h.c)/( (h.c)/ λo  + Emax)) (1)
trong đó:
λo : giới hạn quang điện của kim loại
               
λ: bước sóng của ánh sáng chiếu vào bề mặt kim loại để bứt electron ra khỏi bề mặt kimloại.
                Emax: động năng ban đầu ( năng lượng của ánh sáng chiếu vào bề mặt kim loại).

Thay số vào (1) ta có:                                                            
                 λ = ((6,625.10-34.3.108)/((6,625.10-34.3.108)/(2,3.10-7) + (2,4.10-19)) = 1,8.10-7(m)
                    = 1800 Ǻ

Thầy xem hộ em lời giải của bài này ạ, em trình bày chưa được rõ ràng mong thầy sửa lỗi cho em ạ. em cám ơn thầy ạ!

13 tháng 1 2015

Năng lượng cần thiết để làm bật  e ra khỏi kim loại Vonfram là:

                            E===5,4eV

Để electron bật ra khỏi kim loại thì ánh sáng chiếu vào phải có bước sóng ngắn hơn bước sóngtấm kim loại. Mà năng lượng ánh chiếu vào kim loại có E1<E nên electron không thể bật ra ngoài

12 tháng 1 2015

a) Ta có: \(\Delta\)P=m.\(\Delta\)v= 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)

AD nguyên lý bất định Heisenberg: \(\Delta\)x.\(\Delta\)Px\(\ge\)\(\frac{h}{2.\Pi}\) với \(\frac{h}{2.\Pi}\)= 1,054.10-34

Suy ra: \(\Delta\)\(\ge\)\(\frac{1,054.10^{-34}}{1,82.10^{-24}}\)= 5,79.10-11 m

b) \(\Delta\)\(\ge\)\(\frac{1,054.10^{-34}}{10^{-5}}\)= 1,054.10-29 (kg.m/s)

Suy ra:\(\Delta\)vx = 1,054.10-27 (m/s)

12 tháng 1 2015

AD nguyên lý bất định Heisenberg: Δx.ΔPx  h/(4.Π) với h=6,625.10-34

a)Ta có: ΔP=m.Δv= 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)

=> Δ 6,625.10-34/(4.1,82.10-24)= 2,8967.10-11  (m)

b) ΔPx = m. Δvx  h/(4.Π.Δx )    

=> m. Δvx   6,625.10-34/(4.10-5) = 5,272.10-30

=> Δvx  5,272.10-30/0,01 = 5,272.10-28 (m/s)

 

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

24 tháng 3 2016

Các cặp chất là đổng đẳng của nhau : C3H7OH và C4H9OH;

CH3 - О - C2H5 và C2H3 - О - C2H5

Các cặp chất là đồng phân của nhau : CH3-O-C2H5 và C3H7OH;

C2H5-O-C2H5 và C4H9OH. 

 

26 tháng 1 2015

Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này: 

Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn  \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:

                                         \(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)

Không biết đúng không có gì sai góp ý nhé!!

a. pt S ở trạng thái dừng:

           \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0

đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:

            U=-\(\frac{Z^2_e}{r}\)

\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:

            \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0

b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)

ta có :  \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)

  \(\rightarrow\)Hằng số Rydberg:

           Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)

  vạch màu lam:n=3 ; n'=4

           Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.10 m-1=109710 cm-1.

c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)

Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))

              =109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.

Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:

                  En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.

Bài 31_ Cấu tạo chất:Cho phân tử CH2 = CH - CH = CH - CH = CH2 chuyển động trong giếng thế một chiều có chiều rộng là a. Tính năng lượng electron pi trong toàn khung phân tử? Cho biết chiều dài giữa 2 nguyên tử cacbon là 1,4 Å, hằng số planck h = 6,625.10-34 J.s và khối lượng electron me = 9,1.10-31 kg.Bài làm:    Với các phân tử chứa liên kết pi, chuyển động trong giếng thế một chiều thì chỉ...
Đọc tiếp

Bài 31_ Cấu tạo chất:Cho phân tử CH2 = CH - CH = CH - CH = CH2 chuyển động trong giếng thế một chiều có chiều rộng là a. Tính năng lượng electron pi trong toàn khung phân tử? Cho biết chiều dài giữa 2 nguyên tử cacbon là 1,4 Å, hằng số planck h = 6,625.10-34 J.s và khối lượng electron me = 9,1.10-31 kg.

Bài làm:    

Với các phân tử chứa liên kết pi, chuyển động trong giếng thế một chiều thì chỉ khảo sát cd của các electron pi và năng lượng của hệ chính là tổng năng lượng của các electron pi. 

Ta có: \(E_{\pi}=2E_1+2E_2+2E_3\)\(=2.\frac{1^2.h^2}{8.m.a^2}+2.\frac{2^2.h^2}{8.m.a^2}+2.\frac{3^2.h^2}{8.m.a^2}\)

Với các giá trị h,m đã cho ở đề bài. 

Giá trị \(a=\left(N+1\right)l_{c-c}\); N: số nguyên tử Cacbon trong mạch. Vậy : \(a=\left(6+1\right)l_{c-c}=7.1,4.10^{-10}\left(m\right)\).

Thay vào ta có: \(E_{\pi}=1,7085.10^{-18}\left(J\right)hay:1,029.10^3KJ.mol^{-1}\)

4
21 tháng 12 2014

Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.

21 tháng 12 2014

bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với

18 tháng 4 2016

Cấu tạo của phân tử axit có nhóm –CHO.

 

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

29 tháng 12 2014

Bài này đúng rồi