K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4: Ta có:ΔAIP=ΔMIB

nên IA=IM

hay I là trung điểm của AM

Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

30 tháng 8 2021

Câu 4 Ta có xét tg PBM có PN=MN( tg PNA=tg MNC)

                                    PI=BI( tg  AIP= tgMIB)

=> IN là đường trung bình tg PBM

=>IN//BM <=> IN//BC        

30 tháng 8 2021

a) Xét tg ABC có AB=AC(gt)

=> tg ABC cân tại A=> B=C

Cách 1( tính chất  Tg cân)

ta lại có AM là đường trung tuyến

tg ABC là tg cân => AM là dg cao => AH vg góc vs BC

Cách 2 

Xét tg AHB và tg AHC có AH chung

                                        AB=AC( tg ABC cân]
                                        BH=HC( H td BC)

=> tg AHB=tg AHC ( c.c.c)=> AHB=AHC( hai góc bằng nhau) 

Mà BHC= 180 độ=> AHB=AHC=180/2=90 độ

=>AH vg góc với BC

b)Ta có CP vg góc với BC (gt)

          MN vg góc với BC( N là chân dg vuông góc)

=> MN// CP( từ vg góc đến song song)

Xét tg MCP và tg PNM có:

IMN=IPC( MN//CP; slt)

MN=CP( gt)

MP chung

=>tg MCP=Tg PMN (c.g.c)

C) Xét tg MIN và tg PIC có 

IMN=IPC( MN//PC; slt]
MN=CP( gt)

MNI=IPC( MN//PC; slt)

=> tg MIN=tg PIC ( g.c.g)

=>NI=IC( 2 cạnh t/ứ)

 

 

 

 

30 tháng 8 2021

thank bạn nhiều

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)

Xét ΔABH và ΔACH có

AB=AC

AH chung

BH=CH
Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Do đó: AH\(\perp\)BC

26 tháng 8 2021

bài 2
1)
/2x-7/+\(\dfrac{1}{2}=1\dfrac{1}{2}\)
/2x-7/+\(\dfrac{1}{2}=\dfrac{3}{2}\)
/2x-7/=1
=>   2x-7=1   hoặc   -2x+7 =1
       2x=8       hoặc   -2x=-6
       x=4         hoặc     x=3

Bài 1: 

1: Ta có: \(A=\left(-1\right)^3\cdot\left(-\dfrac{7}{8}\right)^3\cdot\left(-\dfrac{2}{7}\right)^2\cdot\left(-7\right)\cdot\left(-\dfrac{1}{14}\right)\)

\(=\dfrac{7^3}{8^3}\cdot\dfrac{4}{49}\cdot\dfrac{1}{2}\)

\(=\dfrac{343}{512}\cdot\dfrac{2}{49}\)

\(=\dfrac{7}{256}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

$4+(y-1)^2\geq 4\Rightarrow \frac{8}{4+(y-1)^2}\leq 2$ 

Mặt khác, áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-1|+|x-3|=|x-1|+|3-x|\geq |x-1+3-x|=2$

$\Rightarrow |x-1|+|x-2|+|x-3|\geq 2+|x-2|\geq 2$
Vậy $\frac{8}{4+(y-1)^2}\leq 2\leq |x-1|+|x-2|+|x-3|$
Dấu "=" xảy ra khi:

\(\left\{\begin{matrix} (y-1)^2=0\\ (x-1)(3-x)\geq 0\\ x-2=0\end{matrix}\right.\Leftrightarrow y=1; x=2\)

24 tháng 9 2021

Áp dụng t/c dtsbn:

\(a+b+c=\dfrac{c}{a+b+1}=\dfrac{a}{b+c+2}=\dfrac{b}{a+c-3}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=\dfrac{1}{2}\\2c=a+b+1\\2a=b+c+2\\2b=a+c-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+1=3c\\a+b+c+2=3a\\a+b+c-3=3b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3c=\dfrac{3}{2}\\3a=\dfrac{5}{2}\\3b=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}\\a=\dfrac{5}{6}\\b=-\dfrac{5}{6}\end{matrix}\right.\)