K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2020

Các bộ 3 số thỏa mãn: (1;2;7);(1;3;6);(1;4;5);(2;3;5) tổng cộng 4 bộ số

Với mỗi bộ số ta có \(3!\) cách hoán vị

Do đó có: \(3!.4=24\) số

23 tháng 11 2016

1. 5/42

2. 1/5

3. 12960

ok

23 tháng 11 2016

3. 2592 mới đúng

1,2 hình như cũng sai rồi

 

NV
3 tháng 1 2022

Tổng 3 chữ số đầu và 3 chữ số cuối là 2+3+4+5+6+7=27, hiệu của chúng là 3

\(\Rightarrow\) Tổng 3 chữ số đầu là 12

\(\Rightarrow\) 3 chữ số đầu là (2;3;7); (2;4;6);(3;4;5) có 3 trường hợp (với mỗi bộ 3 chữ số đầu sẽ có đúng 1 bộ 3 chữ số cuối tương ứng)

\(\Rightarrow\) Có \(3.3!.3!=108\) số thỏa mãn

2 tháng 11 2017

Ta có các trường hợp sau xảy ra:

Trường hợp 1: Số tạo thành gồm 3 chữ số lẻ và 4 chữ số chẵn:

Bước 1: Chọn 3 số lẻ trong 5 số lẻ, có  cách.

Bước 2: Xếp 3 số lẻ vừa chọn với 4 chữ số chẵn thành một dãy, có 7! cách xếp.

Vậy có số.

Trường hợp 1: Số tạo thành gồm 5 chữ số lẻ và 2 chữ số chẵn:

Bước 1: Chọn 2 chữ số chẵn trong 4 số chẵn, có  cách.

Bước 2: Xếp 2 chữ số chẵn vừa chọn với 5 chữ số lẻ thành một dãy, có 7! Cách xếp.

Vậy có số.

Kết luận có 50400+30240=80640 số thỏa yêu cầu.

Chọn A.

13 tháng 7 2017

 Gọi   là số thỏa mãn yêu cầu bài toán.

Ta có : Chọn một số khác 0 xếp vào vị trí a1 có 9 cách;

Chọn một số xếp vào vị trí a2  có 10 cách;

Chọn một số xếp vào vị trí a3 có 10 cách ;

Chọn một số xếp vào vị trí a4  có 10 cách.

Vậy có 9.10.10.10=9000  số.

 Chọn D.

Giúp em giải mấy bài vs ạ Bài 6:Từ các số 1,2,3,4,5,6có thể lập được bao nhiêu số tự nhiên thỏaa)Là số lẽ có 4 chữsốb)bé hơn 1000c)Gồm 6 chữ số khác nhaud)Gồm 3 chữ số khác nhau Bài 7:Có thể lập được bao nhiêu số tự nhiên thỏaa) Gồm 4 chữ số khác nhau?b) Gồm 3chữ số khác nhau nhưng số tạo thành là các số chẵn?c)Là số lẽ,lớn hơn 3000 và có 4 chữ số khác nhauc) Gồm 5chữ số...
Đọc tiếp

Giúp em giải mấy bài vs ạ

 

Bài 6:Từ các số 1,2,3,4,5,6có thể lập được bao nhiêu số tự nhiên thỏa

a)Là số lẽ có 4 chữsố

b)bé hơn 1000

c)Gồm 6 chữ số khác nhau

d)Gồm 3 chữ số khác nhau 

Bài 7:Có thể lập được bao nhiêu số tự nhiên thỏa

a) Gồm 4 chữ số khác nhau?

b) Gồm 3chữ số khác nhau nhưng số tạo thành là các số chẵn?

c)Là số lẽ,lớn hơn 3000 và có 4 chữ số khác nhau

c) Gồm 5chữ số khác nhau nhưng số tạo thành là số chia hết cho 5

Bài 8:Có 10 quyển sách khác nhau. Có bao nhiêu cách tặng cho 3 học sinh, mỗi học sinh 1 quyển

Bài 9:Có 7 bì thư khác nhau và 5 con tem khác nhau. Có bao nhiêu cách dán 3 con tem vào 3 bì thư

Bài 10:Cho 10 điểm nằm trên 1 đường tròn.

a) Có bao nhiêu vec tơ khác 0 mà điểm đầu và điểm cuối lấy từ các điểm đã cho.

b) Có bao nhiêu tam giác có đỉnh là một trong các điểm đã cho.

c) Nối 10 điểm đó lại thành 1 đa giác lồi. Hỏi đa giác đó có bao nhiêu đường chéo.

Bài 11:Cho 2 đường thẳng a, b song song. Trên a lấy 5 điểm phân biệt, trên b lấy 6 điểm phân biệt.

a) Hỏi có bao nhiêu tam giác được thành lập từ các điểm trên?b) Hỏi có bao nhiêu hình thang được thành lập từ các điểm trên?

Bài 12:Một lớp học có 40 học sinh,cần cử ra 1 ban cán sự lớp gồm 1 lớp trưởng,1 lớp phó và 3 ủy viên.Hỏi có bao nhiêu cách lập 1 ban cán sự biết rằng các hs có khả năng chọn như nhau.

Bài 13:Có 4 nam, 4 nữ. Có bao nhiêu cách xếp các bạn vào một bàn dài có 8 ghế sao cho

a) Nam nữ xen kẽ

b) Nam ngồi cạnh nhau

 

1
6 tháng 12 2021

Tách ra.

16 tháng 1 2017

Đáp án A 

Giải.

Số cách lập là 4.3.2.1 = 24.

17 tháng 5 2016

Gọi A là tập hợp các số cần tìm. Mỗi phần tử của A có dạng

\(\overline{a_1a_2a_3a_4a_5a_6}\)

ngoài ta \(a_3\) + \(a_4\) + \(a_5\) = 8

Ta có 1+2+5 = 1+3+4 = 8. Vậy có 2 cách chọn nhóm 3 số để làm các số hàng chục, hàng trăm, hàng nghìn. Bài toán chọn số được tiến hành theo các bước sau:

- Bước 1: Chọn ra 3 số trong 8 số để có 

\(a_3\) + \(a_4\) + \(a_5\) = 8
Có \(n_1\) = 2 cách chọn
- Bước 2: Với 3 số chọn ra ở bước 1 có
 \(n_2\) = 3! = 6 cách lập ra số \(a_3\)\(a_4\)\(a_5\)
- Bước 3: Chọn ra số \(a_1\)\(a_2\)\(a_6\) (theo thứ tự trên), đấy là chọn 3 trong 6 số (có tính đến thứ tự). Số cách chọn
\(n_3\) = \(A_6^3\) = 120
Theo quy tắc nhân số các số thỏa mãn yêu cầu là:
n = \(n_1\)\(n_2\)\(n_3\) = 2.6.120 = 1440 số.
30 tháng 8 2018

Cho t hỏi là a3+a4+a5=8 có 5 cách mà:

1+7+0=1+2+5=3+4+1=6+2+0=3+5+0=8

Thế thì tổng cộng có 5.3!.120=3600 số

Coi số 7 và số 8 như một số. Ta sẽ chọn ra một số \(\overline{abcd}\) mà a,b,c,d được lấy từ tập gồm {1;2;3;4;5;6;{7;8}}

Vì 7 và 8 luôn có mặt nên ta sẽ chọn cho 7 và 8 trước.

=>Có 4 cách chọn vị trí

Vì số 7 và 8 có thể hoán đổi được nên sẽ có 2!=2 cách hoán đổi

Số cách chọn cho 3 vị trí còn lại từ 6 số là 6*5*4=120(cách)

=>Có 4*2*120=120*8=960(số) cần tìm