Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) gọi số cần lập là abcde
(a khác 0...)
chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
Số cách chọn : \(5\times6\times6\times6=1080\)(vì chỉ có 5 cách chọn số đứng đầu)
b) số cách lập số tự nhiên có 4 chữ số :
-Có 5 cách chọn chữ số làm số đầu (1;2;3;4;5) vì số 0 không đứng đầu được
-Có 5 cách chon số thứ hai vì đã chọn 1 số đứng đầu
-Có 4 cách chọn số thứ ba vì đã chọn hai số đầu
-có 3 cách chon số thứ 4 vì chọn 3 số đầu
Suy ra có số cách chọn : \(5\times5\times4\times3=300\)
ez
a:b có thể là 1 số tự nhiên bất kì nên a,b N*
vậy có
hm.......................................................................................................................................khó khăn đây
có vô số
Đặt A = {1, 2, 3, 4, 5, 6 }
a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.
\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)
b. *Cách 1:
Số chẵn là các số có tận cùng 2, 4, 6
- Gọi số chẵn 6 chữ số khác nhau là abcdef
- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)
Có 5 cách chọn chữ số a;
Có 4 cách chọn chữ số b (b ≠ a)
Có 3 cách chọn chữ số c(c ≠ a, b);
Có 2 cách chọn chữ số d (d ≠ a, b, c);
Có 1 cách chọn chữ số e (e ≠ a, b, c, d);
Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)
*Cách 2:
Với f = 2, 4, 6 có 3 cách chọn f
a, b, c, d, e ≠ f nên có = 5! cách chọn.
Vậy số cách chọn: 5!.3 = 360 (số)
Gọi số lẻ có 6 chữ số a1b1c1d1e1f1
Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.
Vậy ta có: 3.5! = 360 số
c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:
- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn
Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:
n1 = 3 .5! = 360 số.
- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.
Số các số như vậy là: n2 = 2.4! = 48 số
- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:
Số các số như vậy là: n3 = 3! = 6 số
Vậy số các số nhỏ hơn 432.000 là:
n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.