K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

Có 5 cách chọn chữ số hàng đơn vị là số chẵn.

Có 9 cách chọn chữ số hàng chục

Theo quy tắc nhân, có 5 × 9 = 45 số chẵn gồm 2 chữ số

10 tháng 4 2017

Có bao nhiêu số tự nhiên có tính chất:

a. Là số chẵn và có hai chữ số (không nhất thiết khác nhau).

KQ: \(5\cdot9=45\) (số)

b. Là số lẻ và có hai chữ số (không nhất thiết khác nhau).

KQ: \(5\cdot9=45\) (số)

c. Là số lẻ và có hai chữ số khác nhau.

KQ: \(5\cdot8=40\) (số)

d. Là số chẵn và có hai chữ số khác nhau.

KQ: \(9+4\cdot8=41\) (số)

23 tháng 4 2018

Có 5 cách chọn chữ số hàngđơn vị là lẻ.

Có 9 cách chọn chữ số hàng chục.

Vậy có 5 × 9 = 45 số lẻ gồm hai chữ số (có thể giống nhau).

18 tháng 12 2019

Số các số chẵn có hai chữ số, tận cùng bằng 0 là 9.

Để tạo nên số chẵn không chẵn chục, ta chọn chữ số hàng đơn vị khác 0. Có 4 cách chọn. Tiếp theo chọn chữ số hàng chục. Có 8 cách chọn. Vậytheo quy tắc cộng và quy tắc nhân, ta có 9 + 8 × 4 = 41 số chẵn gồm hai chữ số khác nhau.

2 tháng 2 2018

28 tháng 12 2019

Chọn B

Gọi số cần tìm là : a 5 chẵn và trong số luôn có mặt số 0.

Số cần tìm được chọn từ một trong các trường hợp :

Trường hợp 1 :   a 5 = 0 có 5 cách chọn.

Khi đó  cách chọn. Suy ra có : A 9 4  (số).

Trường hợp 2 :  có 4 cách chọn.

Chữ số 0 có 3 cách chọn vị trí cách chọn 3 số cho 3 vị trí còn lại.

Suy ra có : 4.3. A 8 3  (số).

Vậy ta có  thỏa mãn yêu cầu bài toán.

21 tháng 1 2017

20 tháng 8 2021

a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 3 chữ số chẵn có C35 cách

Sắp xếp 6 chữ số này có 6! cách

Vậy có C35 . C35 . 6! số

TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 2 chữ số chẵn có C24 cách

Sắp xếp 5 chữ số có 5! cách

Vậy có C35 . C24 . 5! số

Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ

 

25 tháng 2 2019

Gọi tập hợp E = {0,1,2,3,4,5}

c) Số tự nhiên có 3 chữ số có dạng

Có ba cách chọn chữ số c ( vì c ∈ {0,2,4}).

Ứng với mỗi cách chọn c , có 6 cách chọn chữ số b (vì b ∈ E)

ứng với mỗi cách chọn c, b có 5 cách chọn chữ số a (vì a ∈ E và a≠ 0)

Áp dụng quy tắc nhân ta có 3*6*5 = 90 số có 3 chữ số.

Vì vậy đáp án là B