K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2023

Gọi số tự nhiên đó là `\overline{abcdefg}`

   `(a,b,c,d,e,f,g in {0;1;2;3;4;5;6;7;8;9} ; a \ne 0 ; a ne b ne c ne d ne e ne f ne g)`

`***` Tất cả số có `7` chữ số khác nhau là: `9. A_9 ^6` số

`***` Xét TH số có `7` chữ số khác nhau không có mặt `2` chữ số `1;2` có: `7.A_7 ^6` số

  `=>` Có `9.A_9 ^6 -7.A_7 ^6 =509040` số có `7` chữ số khác nhau và nhất thiết có mặt `2` chữ số `1;2` 

Cứ coi số 1;2 như 1 số

\(\overline{abcdef}\)

Ta sẽ chọn ra số có 6 chữ số từ tập {0;{1;2};3;4;5;6;7;8;9}

=>Có \(A^6_9=60480\left(số\right)\) kể cả số bắt đầu bằng 0

Ta sẽ loại trường hợp bắt đầu bằng 0

a=0 thì có 1 cách chọn

số cách chọn cho 5 chữ số còn lại là:\(A^5_8=6720\left(số\right)\)

=>Có 60480-6720=53760(số)

2 tháng 2 2018

28 tháng 12 2019

Chọn B

Gọi số cần tìm là : a 5 chẵn và trong số luôn có mặt số 0.

Số cần tìm được chọn từ một trong các trường hợp :

Trường hợp 1 :   a 5 = 0 có 5 cách chọn.

Khi đó  cách chọn. Suy ra có : A 9 4  (số).

Trường hợp 2 :  có 4 cách chọn.

Chữ số 0 có 3 cách chọn vị trí cách chọn 3 số cho 3 vị trí còn lại.

Suy ra có : 4.3. A 8 3  (số).

Vậy ta có  thỏa mãn yêu cầu bài toán.

21 tháng 1 2017

25 tháng 4 2017

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 1 ,   5 ,   6 ,   7 .

Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:

a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

b được chọn từ tập A (có 4  phần tử) nên có 4 cách chọn.

c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

Như vậy, ta có 4.4.4.4 = 256 số cần tìm.

Chọn đáp án B.

27 tháng 6 2018

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 1 ,   5 ,   6 ,   7 .

Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:

·        a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

·        b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

·         c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

·        d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

Như vậy, ta có 4.4.4.4 = 256 số cần tìm.

Chọn đáp án B.

1 tháng 1 2021

Các chữ số được đặt trong các ô trống.  

 .  .  .  . 

TH1: Số cần lập có chữ số 0:

Đưa 0 vào 3 cách

Đưa 1 vào 3 cách

Đưa 3 vào 2 cách

Lấy 1 số bất kì  ô còn lại : 7 cách

=> TH1 có 126 số

TH2: Số cần lập không có chữ số 0:

Đưa 1 vào 4 cách

Đưa 3 vào 3 cách

Lấy 2 số bất kì đưa vào 2  ô còn lại : \(A^2_7\) cách

=> TH2 có 504 số

Vậy lập được tất cả 504 + 126 = 630 số

19 tháng 10 2019

+ Trước tiên ta đếm số các số tự nhiên có bốn chữ số khác nhau từ các chữ số đã cho.

Gọi số có 4 chữ số là  

Có 5 cách chọn a(vì a khác 0); khi đó có  cách chọn bcd từ 5 số còn lại.

Theo quy tắc nhân có:    số.

+ Tiếp theo, số các số tự nhiên có bốn chữ số khác nhau từ các chữ số đã cho mà không có mặt chữ số 1

Gọi số có 4 chữ số là  

Có 4 cách chọn a(vì a khác 0); khi đó có  cách chọn bcd từ 4 số còn lại.

Theo quy tắc nhân có    số

Vậy số các số tự nhiên có bốn chữ số khác nhau mà nhất thiết phải có mặt số 1 là: 

300 – 96 = 204.

Chọn A.

3:

Ta sẽ chia M ra làm 3 nhóm

Nhóm 1: \(A=\left\{0;3;6\right\}\)

Nhóm 2: \(B=\left\{1;4;7\right\}\)

Nhóm 3: \(C=\left\{2;5;8\right\}\)

TH1: 1 số A,1 số B, 1 số C

*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách

*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách

=>Có 108+36=144 cách

TH2: 3 số A

=>Có 2*2*1=4 số

TH3: 3 số B

=>Có 3!=6 số

TH4: 3 số C

=>Có 3!=6 số

=>Có 144+4+6+6=148+12=160 số

10 tháng 8 2019

Đáp án C