Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}=\dfrac{x}{3^2}+\dfrac{x}{3^3}+\dfrac{x}{3^4}\)
\(\Leftrightarrow\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}-\dfrac{x}{3^2}-\dfrac{x}{3^3}-\dfrac{x}{3^4}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-\dfrac{1}{3^4}\right)=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0
\(\dfrac{15-x}{7}=\dfrac{x+7}{4}\Leftrightarrow4\left(15-x\right)=7\left(x+7\right)\)
\(\Rightarrow60-4x=7x+49\)
\(\Rightarrow60-49=7x+4x\)
\(\Rightarrow11=11x\)
\(\Rightarrow x=1\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{15-x}{7}=\dfrac{x+7}{4}=\dfrac{15-x+x+7}{7+4}=\dfrac{22}{11}=2\)
\(\Rightarrow\dfrac{15-x}{7}=2\Rightarrow15-x=14\Rightarrow x=1\)
Vậy \(x=1\).
ta xét trường hợp: -4:(-x)=-9:(-x) với x<0 (theo đề bài)
ta lắp một số bất kì: -4:(-2)=-9:(-2) => -2=-9:2 (VÔ LÍ)
=>x không thể thỏa mãn được đề bài
kết luận: x thuộc tập hợp rỗng
\(\left|\dfrac{x}{2015}+\dfrac{x}{2016}\right|=\left|\dfrac{x}{2016}+\dfrac{x}{2017}\right|\)
\(\Rightarrow\left|x\right|.\left|\dfrac{1}{2015}+\dfrac{1}{2016}\right|=\left|x\right|.\left|\dfrac{1}{2016}+\dfrac{1}{2017}\right|\)
\(\Rightarrow\left|x\right|.\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)=\left|x\right|.\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
Từ đó \(\Rightarrow\)
\(\left|x\right|.\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left|x\right|.\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)=0\)
\(\Rightarrow\left|x\right|.\left[\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\right]=0\)
\(\Rightarrow\left|x\right|=0:\left[\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\right]\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
Vậy \(x=0\)
\(\dfrac{\left|x-7\right|}{\left|x-4\right|}=\dfrac{\left|x-1\right|}{\left|x-4\right|}\)
Ta xét: \(\left|x-7\right|\ge0;\left|x-4\right|\ge0\)
\(\Rightarrow\dfrac{\left|x-7\right|}{\left|x-4\right|}\ge0\)
Ta lại xét: \(\left|x-1\right|\ge0;\left|x-4\right|\ge0\)
\(\Rightarrow\dfrac{\left|x-1\right|}{\left|x-4\right|}\ge0\)
\(\dfrac{\left|x-7\right|}{\left|x-4\right|}=\dfrac{\left|x-1\right|}{\left|x-4\right|}\)
\(\Rightarrow\dfrac{x-7}{x-4}=\dfrac{x-1}{x-4}\)
\(\Rightarrow x-7=x-1\)
=> \(x\in\varnothing\)
Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}=\dfrac{t}{y+x+z}\)
\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)
\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+t+x}=\dfrac{x+y+z+t}{y+x+z}\)+) Xét \(x+y+z+t=0\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)
\(\Rightarrow A=-1\)
+) Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)
\(\Rightarrow A=1\)
Vậy A = -1 hoặc A = 1
Ta có:\(\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)
Nếu x+y+z+t\(\ne\)0 thì y+z+t=z+t+x=t+x+y=x+y+z
=>x=y=z=t nên P=1+1+1+1=4
Nếu X+y+z+t=0 thì P=-4
\(\Leftrightarrow x^2=4\cdot25=100\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
Vậy có 2 gt x thỏa