K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2021

\(\lim n^4\left(-a-\dfrac{50}{n^3}+\dfrac{11}{n^4}\right)=+\infty.\left(-a\right)\)

Giới hạn bằng \(+\infty\) khi \(-a>0\Leftrightarrow a< 0\)

\(\Rightarrow a=\left\{-3;-2;-1\right\}\)

NV
7 tháng 2 2021

Giới hạn đã cho bằng \(+\infty\)

\(\Leftrightarrow a^2-1\ge0\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

Có vô số giá trị nguyên

 

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow-\infty}x^3\left(m+\dfrac{2}{x}\right)\left(\dfrac{m}{x^2}-3\right)=+\infty.\left(3m\right)=-\infty\)

\(\Rightarrow m< 0\Rightarrow\) có 20 giá trị nguyên của m

NV
8 tháng 2 2021

\(\lim n^2\left[\left(\sqrt{a-1}-3\right)+\dfrac{5}{n}-\dfrac{3}{n^2}\right]=+\infty.\left(\sqrt{a-1}-3\right)\)

Để giới hạn đã cho bằng \(-\infty\Rightarrow\sqrt{a-1}-3< 0\Leftrightarrow1\le a< 10\)

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự...
Đọc tiếp

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)

b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)

c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?

d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự luận giúp em ạ)

A.-1            B.1           C.2                           D.0

e. Cho hàm số \(f\left(x\right)=x^3+2x-1\) .Xét phương trình f(x) = 0 (1), trong các mệnh đề sau tìm mệnh đề sai? giải tự luận giúp em ạ

A. (1) có nghiệm rên khoảng (-1;1)

B. (1) Không có nghiệm trên khoảng (-5;3)

C. (1) có nghiệm trên R 

D. (1) có nghiệm trên khoảng (0;1)

 

 

3
NV
14 tháng 3 2022

a.

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)

\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)

\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)

Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn

NV
14 tháng 3 2022

b.

\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)

\(=1+1+1=3\)

\(f\left(-1\right)=3a\)

Hàm gián đoạn tại điểm \(x_0=-1\) khi:

\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)

\(\Rightarrow a\ne1\)

NV
18 tháng 4 2021

\(\lim\dfrac{n^4-3n+4}{an^3+2n^2+1}=\lim\dfrac{n-\dfrac{3}{n^2}+\dfrac{4}{n^3}}{a+\dfrac{2}{n}+\dfrac{1}{n^3}}=+\infty.\left(\dfrac{1}{a}\right)\)

Giới hạn đã cho bằng \(-\infty\) khi và chỉ khi \(\dfrac{1}{a}< 0\Leftrightarrow a< 0\)

18 tháng 4 2021

Em muốn hỏi thêm bài này ạ

Tìm tất cả các giá trị của m để PT có nghiệm:\(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2... - Hoc24

21 tháng 12 2023

\(lim\left(\sqrt{9n^2+10n}-an\right)=-\infty\)

\(\Leftrightarrow lim\dfrac{9n^2+10n-a^2n^2}{\sqrt{9n^2+10n}}=-\infty\)

\(\Leftrightarrow lim\dfrac{9-a^2+\dfrac{10}{n}}{\sqrt{\dfrac{9}{n^2}+\dfrac{10}{n^3}}}=-\infty\)

\(\Leftrightarrow\dfrac{9-a^2}{0}=-\infty\)

\(\Rightarrow a^2>9\)

\(\Leftrightarrow a>3\) \(\Rightarrow a\in\left[4;2023\right]\)

25 tháng 11 2023

1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)

\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

18 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}-x}+\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-1-x^3}{\sqrt[3]{\left(3x^3-1\right)^2}+x\sqrt[3]{3x^3-1}+x^2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}+\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{1}{x^2}}{\dfrac{\sqrt[3]{\left(3x^3-1\right)^2}}{x^2}+\dfrac{x\sqrt[3]{3x^3-1}}{x^2}+\dfrac{x^2}{x^2}}=0\)

b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x-x^2}{\sqrt{x^2+x}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^3-x^3+x^2}{x^2+x\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x^2}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{x\sqrt[3]{x^3-x^2}}{x^2}+\dfrac{\sqrt[3]{\left(x^3-x^2\right)^2}}{x^2}}\)

\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1-2x-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{4x^2-1}+\sqrt[3]{\left(2x+1\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2}{x^{\dfrac{2}{3}}}}{\dfrac{\sqrt[3]{\left(2x-1\right)^2}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{4x^2-1}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{\left(2x+1\right)^2}}{x^{\dfrac{2}{3}}}}=0\)

Check lai ho minh nhe :v

2 tháng 3 2021

cảm ơn bạn nhé , giờ mới trả lời được bucminh

 

NV
6 tháng 2 2021

\(=\lim n^4\left(-1-\dfrac{50}{n^3}+\dfrac{11}{n^4}\right)=+\infty.\left(-1\right)=-\infty\)

6 tháng 2 2021

đặ n mũ 4 ra ngoài 

dễ mà