Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
Xét biểu thức
A = ( x + 1 ) x 2 + 2 = 0 ⇔ x + 1 = 0 x 2 + 2 = 0 ⇒ x + 1 = 0 do x 2 + 2 ≥ 2 > 0 ⇒ x = − 1
Vậy có 1 giá trị của x thỏa mãn
Chọn đáp án B
x,y là hai đại lượng tỉ lệ thuận
=>\(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{4}=\dfrac{y_1}{16}\)
=>\(\dfrac{x_1}{1}=\dfrac{y_1}{4}\)
mà \(3x_1+2y_1=22\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{1}=\dfrac{y_1}{4}=\dfrac{3x_1+2y_1}{3\cdot1+2\cdot4}=\dfrac{22}{11}=2\)
=>\(x_1=2\cdot1=2\)
=>Chọn D
\(K\left(x\right)=L\left(x\right)\)
\(\Rightarrow x^2-3x+2=x^2+px+q+1\)
\(\Rightarrow-3x+2=px+q+1\)
-Áp dụng PP hệ số bất định:
\(\Rightarrow p=-3;q+1=2\Rightarrow q=1\)
Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)
\(\Rightarrow\)(n + 1).n : 2 = a.111
\(\Rightarrow\) n(n + 1) = a.222
\(\Rightarrow\) n(n + 1) = a.2.3.37
a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6
\(\Rightarrow\)n(n + 1) = 36.37 \(\Rightarrow\) n = 36
Vậy cần 36 số hạng.
\(A=\left|x-13\right|+\left|x-14\right|+\left|x-15\right|+\left|x-16\right|+\left|x-17\right|-10\)
\(=\left(\left|x-13\right|+\left|x-16\right|\right)+\left(\left|x-14\right|+\left|x-17\right|\right)-10+\left|x-15\right|\)
\(=\left(\left|x-13\right|+\left|16-x\right|\right)+\left(\left|x-14\right|+\left|17-x\right|\right)-10+\left|x-15\right|\)
\(\Rightarrow A\ge\left|x-13+16-x\right|+\left|x-14+17-x\right|-10+\left|x-15\right|\)
\(=\left|3\right|+\left|3\right|-10+\left|x-15\right|\)\(=3+3-10+\left|x-15\right|=-6+\left|x-15\right|\)
Vì \(\left|x-15\right|\ge0\forall x\)\(\Rightarrow A\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-13\right)\left(16-x\right)\ge0\\\left(x-14\right)\left(17-x\right)\ge0\\x-15=0\end{cases}}\Leftrightarrow\hept{\begin{cases}13\le x\le16\\14\le x\le17\\x=15\end{cases}}\Leftrightarrow x=15\)
Vậy \(minA=-6\Leftrightarrow x=15\)
Để (x-4)(x2+16)(x2-16)(x+1)=0 thì:
TH1: x-4=0 \(\Rightarrow\)x=4
TH2: x2+16=0\(\Rightarrow\)x2=-16 loại (vô lý)
TH3:x2-16=0\(\Rightarrow\)x2=16\(\Rightarrow\)x=4 hoặc x=-4
TH4:x+1=0\(\Rightarrow\)x=0-1=-1
Vậy có tất cả 3 giá trị của x thỏa mãn
\(\left(x-4\right)\left(x^2+16\right)\left(x^2-16\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x^2+16=0\\x^2-16=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x^2=-16\left(vôlí\right)\\x^2=16\\x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x^2=-16\left(vôlí\right)\\\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\\x=-1\end{matrix}\right.\)
Vậy \(x\) có 3 giá trị là \(-4;-1\) và \(4\).