Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì abc=105 nên thay 105 bằng abc ta được:
\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)
\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Cho mình 1 l i k e nha..............
Ta có:
a+b-c/c = b+c-a/a = c+a-b/b
=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2
=>a+b-c/c + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b
=>a+b+c/c = a+b+c/a =a+b+c/b
* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)
b= 0-a-c= -(a+c)
c= 0-b-a= -(b+a)
Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được
B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b
=(-c)/a * (-b)/c * (-a)/b =-1
* Nếu a+b+c\(\ne\)0 thì a=b=c
Khi đó
B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8
Vậy B=-1 hoặc B=8
nhớ k nha bạn