Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |x|+|y| thì nếu x dương, y dương=> Sẽ có tổng cộng 19x2 = 38 cặp.
Nếu x,y cùng âm thì cx có tổng cộng 38 cặp.
X dương y âm thì cx có 38 cặp và x âm y dương cx có 38 cặp
=> có tổng cộng 38 . 4 = 152( cặp)
b) Có tổng cộng: 36.4 = 144 cặp
b) Xét \(x=0\)thì \(0+\left|y\right|< 20\)=> \(\left|y\right|< 20\Rightarrow y\in\left\{0;\pm1;\pm2;...;\pm19\right\}\)gồm 39 giá trị
Xét x = \(\pm1\)thì y \(\in\left\{0;\pm1;\pm2;\pm3;...;\pm18\right\}\)gồm 37 giá trị
....
Xét x = \(\pm\)18 thì y \(\in\){0; \(\pm\)1}
Xét x = \(\pm19\)=> y = 0 , có 1 giá trị
Có tất cả : 2(1 + 3 + ... + 37) + 39 = 761(cặp số)
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
Từ đẳng thức:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\)
ta tính một biến theo biến còn lại:
\(\frac{1}{x}=\frac{1}{24}-\frac{1}{y}=\frac{y-24}{24y}\)
\(\Rightarrow x=\frac{24y}{y-24}\)
Do x là số tự nhiên khác 0 nên y - 24 > 0 , đặt y - 24 = k (để cho mẫu số vế phải là đơn thức). Khi đó:
y = 24 + k
\(x=\frac{24.\left(24+k\right)}{k}=24+\frac{24.24}{k}\)
Vậy để x và y là các số tự nhiên thì k là ước số của 24.24. Ta có 24.24 = (23.3)(23.3) = 26.32 nên 24.24 có (6 + 1)(2 + 1) = 21 ước.
Với mỗi giá trị của k là ước của 24.24 ta tính được một bộ (x, y) theo công thức trên.
ĐS: có 21 cặp số tự nhiên thỏa mãn điều kiện đã cho.
a; x; y thoả mãn tất cả các giá trị \(|x|\)\(|y|\)\(\le4\)
b, vô số; điều kiện \(|x|+|y|>4\)