K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{3}{2}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\)

\(\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2\left(a+b+1\right)=ab\Leftrightarrow2a+2b+2-ab=0\)

\(\Leftrightarrow2a-ab-4+2b+6=0\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\)

\(\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)

Đến đây chắc dễ rồi

27 tháng 2 2017

\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)

Chứng minh tương tự ta có:  \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)

=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)

Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)

=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)

27 tháng 2 2017

Dấu "=" xảy ra khi a=b=c=1

3 tháng 7 2016

mày ghi de sai

phai lon hon 3

3 tháng 7 2016

\(a\le b\le c=>\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}=>1+\frac{1}{a}\ge1+\frac{1}{b}\ge1+\frac{1}{c}\)

\(=>\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge3\left(1+\frac{1}{c}\right)\)

\(=>3\left(1+\frac{1}{c}\right)\le3=>1+\frac{1}{c}\le1=>\frac{1}{c}\le0=>1\le0\)

Đề sai thì phải bn à

5 tháng 4 2017

Ta có: 

\(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\frac{1}{a^2}}{\frac{b+c}{bc}}\)

Biến đổi tương tự cho 2 BĐT còn lại ta có: 

\(\frac{1}{b^3\left(a+c\right)}=\frac{\frac{1}{b^2}}{\frac{a+c}{ac}};\frac{1}{c^3\left(a+b\right)}=\frac{\frac{1}{c^2}}{\frac{a+b}{ab}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{2}{a}+\frac{2}{b}+\frac{2}{c}}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2}3\sqrt[3]{\left(abc\right)^2}=\frac{3}{2}\)

7 tháng 3 2017

Phan cả PHát - stupid lv max 

Try a=3;b=8 or a=4;b=5 or a=5;b=4 

6 tháng 3 2017

à mà thôi ko cần giải đâu mik nghĩ ra rồi

2 tháng 5 2016

ta có:\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

=\(\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(a+c\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

>= \(\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)(BĐT Svaxo)=\(\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

>= \(\frac{3\sqrt[3]{a^2b^2c^2}}{2}\left(BĐTAM-GM\right)=\frac{3}{2}\)(đpcm)

dấu = khi a=b=c=1

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)