Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Mỗi cách xếp chỗ cho bốn bạn học sinh vào bốn chiếc ghế kê thành một hàng ngang là một hoán vị của 4 phần tử. Do đó có 4! = 24 cách.
Số cách sắp xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế là số hoán vị của 4 phần tử \(P4=4!=24\left(cách\right)\)
a) Có 2 cách xếp.
Bạn A có 6! cách.
Bạn B có 6! cách.
Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.
b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.
Chọn 1 học sinh B đối diện A có 6 cách.
Cứ chọn liên tục như vậy ta được:
\(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)
cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường nhau.
- Mỗi cách xếp có 4+5=9 học sinh thành hàng dọc là một hoán vị của 9 học sinh đó. Vậy có tất cả 9! Cách xếp. Chọn đáp án là C
Nhận xét: học sinh có thể nhầm lẫn xếp nam và nữ riêng nên cho kết quả 4!*5! (phương án A); hoặc vừa xếp nam và nữ riêng và sử dụng quy tắc cộng để cho kết quả 4!+5! (phương án B); hoặc chọn 4 học sinh nam trong p học sinh và 5 học sinh nữ trong 9 học sinh để cho kết quả A94.A95 ( phương án D)