K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

xyz = 46656

x . xk . xk2 = 46656

x3k3 = 46656

xk = \(\sqrt[3]{46656}\)

xk = 36

y = 36

x + y + z = 114

x + z + 36 = 114

x + z = 114 - 36

x + z = 78

ĐS: 78

24 tháng 1 2017

78

4 tháng 3 2017

ta có: x.y.z=46656

=> x.xk.xk^2=46656

=> (xk)^3=46656

=> xk=36 => y=36

ta có: x+y+z = 114 => x+z=78

24 tháng 1 2017

x+z=144-\(\sqrt[3]{46656}=144-3.12=108\)

24 tháng 1 2017

\(x+z=144-y;xyz=\left(xk\right)^3=y^3=46656\Rightarrow x+z=144-\sqrt[3]{46656}\)

PT con 46656 xem 

=36.1296=36.9.144=3.12.9.12.12=(3.12)^3

x+z=0

24 tháng 1 2017

Ta có: xyz=46656

<=> x.xk.xk^2=46656

<=> x^3k^3=46656

<=> xk=36 hay y=36

<=> x+y=144-y=144-36=108

26 tháng 1 2017

sai rùi. Đáp án là 78

24 tháng 1 2017

x+z=114-y=114-xk

xyz=(xk)^3=46656=36^3=> xk=36

x+z=114-36=78

20 tháng 1 2017

ko bit

20 tháng 1 2017

78

11 tháng 2 2017

xyz=46656

\(\Leftrightarrow x.xk.xk^2=46656\Leftrightarrow x^3.k^3=46656\Leftrightarrow\left(xk\right)^3=46656\Rightarrow xk=36\)Ta có xk=36=> y=36

Vậy \(x+z=114-y=114-36=78\)

20 tháng 10 2015

Dễ chứng minh được: \(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)

Do đó \(xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2xy+2yz+2zx\)

\(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\Leftrightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

\(\Rightarrow A_{max}=3\Leftrightarrow x=y=z=1\)